分析 根據(jù)全等三角形的判定與性質(zhì),可得AD=BC,DP=CP,根據(jù)AD=BC,可得關(guān)于x的方程,根據(jù)解方程,可得x,根據(jù)待定系數(shù)法,可得函數(shù)解析式.
解答 解:作PC⊥x軸,PD⊥y軸,
如圖,
∴∠COD=∠ODM=∠OCM=90°,
∴四邊形OCPD是矩形.
在△APD和△BPC中,
$\left\{\begin{array}{l}{∠APD=∠BPC}\\{∠PDA=∠PCB}\\{PA=PB}\end{array}\right.$,
∴△APD≌△BPC(AAS),
∴AD=BC,DP=CP,
∴四邊形OCPD是正方形,
∴OC=OD,
∵OA=1,OB=5,
設(shè)OD=x,
則AD=x+1,BC=5-x,
∵AD=BC,
∴x+1=5-x,
解得:x=2,
即OD=OC=2,
∴點P的坐標為:(2,2),
∴k=xy=4,
故答案為:4.
點評 本題考查了全等三角形的判定與性質(zhì),利用全等三角形的判定與性質(zhì)得出AD=BC是解題關(guān)鍵,又利用了待定系數(shù)法求函數(shù)解析式.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 6.5×106 | B. | 6.5×107 | C. | 65×105 | D. | 0.65×107 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -12x+1 | B. | 18x-6 | C. | -12x-2 | D. | 18x-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 16 | C. | 20 | D. | 23 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com