【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤(rùn)W(元與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
【答案】(1) (2),,144元
【解析】
(1)利用待定系數(shù)法求解可得關(guān)于的函數(shù)解析式;
(2)根據(jù)“總利潤(rùn)每件的利潤(rùn)銷售量”可得函數(shù)解析式,將其配方成頂點(diǎn)式,利用二次函數(shù)的性質(zhì)進(jìn)一步求解可得.
(1)設(shè)與的函數(shù)解析式為,
將、代入,得:,
解得:,
所以與的函數(shù)解析式為;
(2)根據(jù)題意知,
,
,
當(dāng)時(shí),隨的增大而增大,
,
當(dāng)時(shí),取得最大值,最大值為144,
答:每件銷售價(jià)為16元時(shí),每天的銷售利潤(rùn)最大,最大利潤(rùn)是144元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,OABC的一個(gè)頂點(diǎn)與坐標(biāo)原點(diǎn)重合,OA邊落在x軸上,且OA=4,OC=2,∠COA=45°.反比例函數(shù)y=(k>0,x>0)的圖象經(jīng)過(guò)點(diǎn)C,與AB交于點(diǎn)D,連接AC,CD.
(1)試求反比例函數(shù)的解析式;
(2)求證:CD平分∠ACB;
(3)如圖2,連接OD,在反比例的函數(shù)圖象上是否存在一點(diǎn)P,使得S△POC=S△COD?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,E為BC邊中點(diǎn),以AD為直徑的⊙O與AE交于點(diǎn)F.
(1)求證:四邊形AOCE為平行四邊形;
(2)求證:CF與⊙O相切;
(3)若F為AE的中點(diǎn),求∠ADF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) y =kx2 +(k +1)x +1(k 為實(shí)數(shù)),
(1)當(dāng) k=3 時(shí),求此函數(shù)圖象與 x 軸的交點(diǎn)坐標(biāo);
(2)判斷此函數(shù)與 x 軸的交點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(3)當(dāng)此函數(shù)圖象為拋物線,且頂點(diǎn)在 x 軸下方,頂點(diǎn)到 y 軸的距離為 2,求 k 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)圖象過(guò)點(diǎn)(﹣1,0),頂點(diǎn)為(1,2),則結(jié)論:
①abc>0;②x=1時(shí),函數(shù)最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1∥l2,⊙O與l1和l2分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是l1和l2上的動(dòng)點(diǎn),MN沿l1和l2平移.⊙O的半徑為1,∠1=60°.有下列結(jié)論:①MN=;②若MN與⊙O相切,則AM=;③若∠MON=90°,則MN與⊙O相切;④l1和l2的距離為2,其中正確的有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連結(jié)AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:AB=AC;
(2)求證:DE為⊙O的切線;
(3)若⊙O半徑為5,∠BAC=60°,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=3x的圖象相交于點(diǎn)A,其橫坐標(biāo)為2.
(1)求k的值;
(2)點(diǎn)B為此反比例函數(shù)圖象上一點(diǎn),其縱坐標(biāo)為3.過(guò)點(diǎn)B作CB∥OA,交x軸于點(diǎn)C,直接寫出線段OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:
徑賽項(xiàng)目:100m,200m,400m(分別用A1、A2、A3表示);
田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用B1、B2表示).
(1)該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為________;
(2)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹(shù)狀圖或列表列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com