【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.拋物線y= x2+bx+c經(jīng)過(guò)點(diǎn)C,且對(duì)稱軸為x=﹣ ,并與y軸交于點(diǎn)G.
(1)求拋物線的解析式及點(diǎn)G的坐標(biāo);
(2)將Rt△ABC沿x軸向右平移m個(gè)單位,使B點(diǎn)移到點(diǎn)E,然后將三角形繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α°得到△DEF.若點(diǎn)F恰好落在拋物線上.
①求m的值;
②連接CG交x軸于點(diǎn)H,連接FG,過(guò)B作BP∥FG,交CG于點(diǎn)P,求證:PH=GH.
【答案】
(1)
解:根據(jù)題意得:
解得:
∴拋物線的解析式為:y= x2+ x- ,點(diǎn)G(0,﹣ )
(2)
解:①過(guò)F作FM⊥y軸,交DE于M,交y軸于N,
由題意可知:AC=4,BC=3,則AB=5,F(xiàn)M= ,
∵Rt△ABC沿x軸向右平移m個(gè)單位,使B點(diǎn)移到點(diǎn)E,
∴E(﹣4+m,0),OE=MN=4﹣m,F(xiàn)N= ﹣(4﹣m)=m﹣ ,
在Rt△FME中,由勾股定理得:EM= = ,
∴F(m﹣ , ),
∵F拋物線上,
∴ = (m﹣ )2+ (m﹣ )﹣ ,
5m2﹣8m﹣36=0,
m1=﹣2(舍), ;
②易求得FG的解析式為:y= x﹣ ,
CG解析式為:y=﹣ x﹣ ,
∴ x﹣ =0,x=1,則Q(1,0),
﹣ x﹣ =0,x=﹣1.5,則H(﹣1.5,0),
∴BH=4﹣1.5=2.5,HQ=1.5+1=2.5,
∴BH=QH,
∵BP∥FG,
∴∠PBH=∠GQH,∠BPH=∠QGH,
∴△BPH≌△QGH,
∴PH=GH.
【解析】(1)把點(diǎn)C坐標(biāo)代入y= x2+bx+c得一方程,利用對(duì)稱軸公式得另一方程,組成方程組求出解析式,并求出G點(diǎn)的坐標(biāo);(2)①作輔助線,構(gòu)建直角△DEF斜邊上的高FM,利用直角三角形的面積相等和勾股定理可表示F的坐標(biāo),根據(jù)點(diǎn)F在拋物線上,列方程求出m的值;②F點(diǎn)和G點(diǎn)坐標(biāo)已知,可以求出直線FG的方程,那么FG和x軸的交點(diǎn)坐標(biāo)(設(shè)為Q)可以知道,C點(diǎn)坐標(biāo)已知,CG的方程也可以求出,那么H點(diǎn)坐標(biāo)可以求出,可以證明△BPH和△MGH全等.本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求函數(shù)(二次函數(shù)、一次函數(shù))的解析式,利用解析式求與坐標(biāo)軸交點(diǎn)坐標(biāo),利用面積法求斜邊上的高及三角形全等的性質(zhì)等;綜合性較強(qiáng),但難度不大,是一道不錯(cuò)的中考?jí)狠S題.
【考點(diǎn)精析】本題主要考查了確定一次函數(shù)的表達(dá)式和全等三角形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問(wèn)題的一般方法是待定系數(shù)法;全等三角形的對(duì)應(yīng)邊相等; 全等三角形的對(duì)應(yīng)角相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)如圖,△ABC中,AB=AC,AB的垂直平分線交邊AB于D點(diǎn),交邊AC于E點(diǎn),若△ABC與△EBC的周長(zhǎng)分別是40cm,24cm,則AB= cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.
概念理解:如圖②,在四邊形ABCD中,如果AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請(qǐng)說(shuō)明理由.
性質(zhì)探究:如圖①,垂美四邊形ABCD兩組對(duì)邊AB、CD與BC、AD之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給出證明.
問(wèn)題解決:如圖③,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG 和正方形ABDE,連結(jié)CE、BG、GE.若AC=2,AB=5,則①求證:△AGB≌△ACE;
②GE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】上網(wǎng)流量、語(yǔ)音通話是手機(jī)通信消費(fèi)的兩大主體,目前,某通信公司推出消費(fèi)優(yōu)惠新招﹣﹣“定制套餐”,消費(fèi)者可根據(jù)實(shí)際情況自由定制每月上網(wǎng)流量與語(yǔ)音通話時(shí)間,并按照二者的階梯資費(fèi)標(biāo)準(zhǔn)繳納通信費(fèi).下表是流量與語(yǔ)音的階梯定價(jià)標(biāo)準(zhǔn).
流量階梯定價(jià)標(biāo)準(zhǔn) | |
使用范圍 | 階梯單價(jià)(元/MB) |
1﹣100MB | a |
101﹣500MB | 0.07 |
501﹣20GB | b |
語(yǔ)音階梯定價(jià)標(biāo)準(zhǔn) | |
使用范圍 | 階梯資費(fèi)(元/分鐘) |
1﹣500分鐘 | 0.15 |
501﹣1000分鐘 | 0.12 |
1001﹣2000分鐘 | m |
【小提示:階梯定價(jià)收費(fèi)計(jì)算方法,如600分鐘語(yǔ)音通話費(fèi)=0.15×500+0.12×(600﹣500)=87元】
(1)甲定制了600MB的月流量,花費(fèi)48元;乙定制了2GB的月流量,花費(fèi)120.4元,求a,b的值.(注:1GB=1024MB)
(2)甲的套餐費(fèi)用為199元,其中含600MB的月流量;丙的套餐費(fèi)用為244.2元,其中包含1GB的月流量,二人均定制了超過(guò)1000分鐘的每月通話時(shí)間,并且丙的語(yǔ)音通話時(shí)間比甲多300分鐘,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB=30°,P是∠AOB平分線上一點(diǎn),CP∥OB,交OA于點(diǎn)C,PD⊥OB,垂足為點(diǎn)D,且PC=4,則PD等于( )
A.1
B.2
C.4
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究
問(wèn)題1 已知:如圖1,三角形ABC中,點(diǎn)D是AB邊的中點(diǎn),AE⊥BC,BF⊥AC,垂足分別為點(diǎn)E,F(xiàn),AE,BF交于點(diǎn)M,連接DE,DF.若DE=kDF,則k的值為 .
拓展
問(wèn)題2 已知:如圖2,三角形ABC中,CB=CA,點(diǎn)D是AB邊的中點(diǎn),點(diǎn)M在三角形ABC的內(nèi)部,且∠MAC=∠MBC,過(guò)點(diǎn)M分別作ME⊥BC,MF⊥AC,垂足分別為點(diǎn)E,F(xiàn),連接DE,DF.求證:DE=DF.
推廣
問(wèn)題3 如圖3,若將上面問(wèn)題2中的條件“CB=CA”變?yōu)?/span>“CB≠CA”,其他條件不變,試探究DE與DF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年黔西南州教育局組織全州中小學(xué)生參加全省安全知識(shí)網(wǎng)絡(luò)競(jìng)賽,在全州安全知識(shí)競(jìng)賽結(jié)束后,通過(guò)網(wǎng)上查詢,某校一名班主任對(duì)本班成績(jī)(成績(jī)?nèi)≌麛?shù),滿分100分)作了統(tǒng)計(jì)分析,繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)你根據(jù)圖表提供的信息,解答下列問(wèn)題:
(1)頻數(shù)分布表中a= , b= , c=
(2)補(bǔ)全頻數(shù)分布直方圖
(3)為了激勵(lì)學(xué)生增強(qiáng)安全意識(shí),班主任準(zhǔn)備從超過(guò)90分的學(xué)生中選2人介紹學(xué)習(xí)經(jīng)驗(yàn),那么取得100分的小亮和小華同時(shí)被選上的概率是多少?請(qǐng)用列表法或畫樹狀圖加以說(shuō)明,并列出所有等可能結(jié)果.
頻數(shù)分布表
分組(分) | 頻數(shù) | 頻率 |
50<x 60 | 2 | 0.04 |
60<x 70 | 12 | a |
70<x<80 | b | 0.36 |
80<x 90 | 14 | 0.28 |
90<x 100 | c | 0.08 |
合計(jì) | 50 | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D在邊BC上,DE∥AB交AC于E,延長(zhǎng)DE至點(diǎn)F,使EF=AE,聯(lián)結(jié)AF、BE和CF.
(1)求證:△EDC是等邊三角形;
(2)找出圖中所有的全等三角形,用符號(hào)“≌”表示,并對(duì)其中的一組加以證明;
(3)若BE⊥AC,試說(shuō)明點(diǎn)D在BC上的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com