【題目】已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF連接EF
(1)如圖1,求證:∠BED=∠AFD;
(2)求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=12,CF=5,求△DEF的面積.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)利用四邊形內(nèi)角和得出∠AED+∠AFD=180°,再根據(jù)補角的性質(zhì)即可得;
(2)延長ED至點P,使ED=DP,構(gòu)造全等三角形,利用全等三角形的性質(zhì)得到直角三角形,由勾股定理及等量代換可得;
(3)由(2)結(jié)論求EF長,再通過全等證明DE=DF,由面積公式求解.
解:(1)∵DE⊥DF,
∴∠EDF=90°,
∵∠BAC=90°,
∴∠AED+∠AFD=180°,
∵∠AED+∠BED=180°,
∴∠BED=∠AFD;
(2)如圖,
延長ED至點P,使ED=DP,連接CP,EP,
∵FD⊥EP,
∴FD為EP的垂直平分線,
∴EF=FP,
∵ED=DP, ∠EDB=∠CDP,BD=CD,
∴△EDB≌PDC,
∴EB=CP, ∠B=∠DCP,
∵∠BAC=90°,
∴∠B+∠ACB=90°,
∴∠DCP+∠ACB=90°,
即∠ACP=90°,
由勾股定理得,CP2+CF2=FP2,
∴BE2+CF2=EF2;
(3)如圖,∵BE2+CF2=EF2
∴52+122=EF2,
∴EF=13,
∵△ABC是等腰直角三角形,BD=CD,
∴AD⊥BC, ∴∠ADC=90°, ∠BAD=∠B=∠C=45°,
∵∠EDF=90°
∴∠ADE=∠CDF,
∴△ADE≌CDF,
∴DE =DF= ,
∴S△DEF= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣+bx+c交x軸于點A(﹣2,0)和點B,交y軸于點C(0,3),點D是x軸上一動點,連接CD,將線段CD繞點D旋轉(zhuǎn)得到DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF.
(1)求拋物線解析式;
(2)若線段DE是CD繞點D順時針旋轉(zhuǎn)90°得到,求線段DF的長;
(3)若線段DE是CD繞點D旋轉(zhuǎn)90°得到,且點E恰好在拋物線上,請求出點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個三角形中,如果一個角是另一個角的2倍,我們稱這種三角形為倍角三角形.如圖1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的對邊分別記為a,b,c,倍角三角形的三邊a,b,c有什么關(guān)系呢?讓我們一起來探索.
(1)我們先從特殊的倍角三角形入手研究.請你結(jié)合圖形填空:
三三角形角形 | 角的已知量 | ||
圖2 | ∠A=2∠B=90° | ||
圖3 | ∠A=2∠B=60° |
(2)如圖4,對于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的對邊分別記為a,b,c,a,b,c,三邊有什么關(guān)系呢?請你作出猜測,并結(jié)合圖4給出的輔助線提示加以證明;
(3)請你運用(2)中的結(jié)論解決下列問題:若一個倍角三角形的兩邊長為5,6,求第三邊長.(直接寫出結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠設(shè)計了一款工藝品,每件成本元,為了合理定價,現(xiàn)投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是元時,每天的銷售量是件,若銷售單價每降低元,每天就可多售出件,但要求銷售單價不得低于元.如果降價后銷售這款工藝品每天能盈利元,那么此時銷售單價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程有實數(shù)根.
(1)求m的值;
(2)先作的圖象關(guān)于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點時,求的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面點A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點為B,有人在直線AB上點C(靠點B一側(cè))豎直向上擺放若干個無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計).當(dāng)豎直擺放圓柱形桶至少________個時,網(wǎng)球可以落入桶內(nèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的表達式.
(2)當(dāng)氣體體積為1 m3時,氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時,氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com