(2003•廣西)半徑為1的圓中有一條弦,如果它的長(zhǎng)為,那么這條弦所對(duì)的圓周角的度數(shù)等于   
【答案】分析:根據(jù)垂徑定理求得AD的長(zhǎng),再根據(jù)三角形函數(shù)可得到∠AOD的度數(shù),再根據(jù)圓周角定理得到∠ACB的度數(shù),根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)即可求得∠AEB的度數(shù).
解答:解:過(guò)O作OD⊥AB,則AD=AB=×=
∵OA=1,
∴sin∠AOD==,∠AOD=60°.
∵∠AOD=∠AOB=60°,∠ACB=∠AOB,
∴∠ACB=∠AOD=60°.
又∵四邊形AEBC是圓內(nèi)接四邊形,
∴∠AEB=180°-∠ACB=180°-60°=120°.
故這條弦所對(duì)的圓周角的度數(shù)等于60°或120度.
點(diǎn)評(píng):此題考查圓周角定理,圓內(nèi)接四邊形的性質(zhì).在解答此類題目時(shí)一定要注意,一條弦所對(duì)的圓周角有兩個(gè),這兩個(gè)角互補(bǔ),不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•廣西)如圖,以A(0,)為圓心的圓與x軸相切于坐標(biāo)原點(diǎn)O,與y軸相交于點(diǎn)B,弦BD的延長(zhǎng)線交x軸的負(fù)半軸于點(diǎn)E,且∠BEO=60°,AD的延長(zhǎng)線交x軸于點(diǎn)C.
(1)分別求點(diǎn)E、C的坐標(biāo);
(2)求經(jīng)過(guò)A、C兩點(diǎn),且以過(guò)E而平行于y軸的直線為對(duì)稱軸的拋物線的函數(shù)解析式;
(3)設(shè)拋物線的對(duì)稱軸與AC的交點(diǎn)為M,試判斷以M點(diǎn)為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年廣西中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•廣西)如圖,以A(0,)為圓心的圓與x軸相切于坐標(biāo)原點(diǎn)O,與y軸相交于點(diǎn)B,弦BD的延長(zhǎng)線交x軸的負(fù)半軸于點(diǎn)E,且∠BEO=60°,AD的延長(zhǎng)線交x軸于點(diǎn)C.
(1)分別求點(diǎn)E、C的坐標(biāo);
(2)求經(jīng)過(guò)A、C兩點(diǎn),且以過(guò)E而平行于y軸的直線為對(duì)稱軸的拋物線的函數(shù)解析式;
(3)設(shè)拋物線的對(duì)稱軸與AC的交點(diǎn)為M,試判斷以M點(diǎn)為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案