【題目】如圖已知數(shù)軸上點(diǎn)A表示的數(shù)為10,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),AB=30,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.

(1)數(shù)軸上點(diǎn)B表示的數(shù)是________,點(diǎn)P表示的數(shù)是________(用含的代數(shù)式表示);

(2)M為線段AP的中點(diǎn),N為線段BP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過程中,線段MN的長(zhǎng)度會(huì)發(fā)生變化嗎?如果不變,請(qǐng)求出這個(gè)長(zhǎng)度;如果會(huì)變化,請(qǐng)用含的代數(shù)式表示這個(gè)長(zhǎng)度;

(3)動(dòng)點(diǎn)Q從點(diǎn)B處出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)與點(diǎn)Q相距4個(gè)單位長(zhǎng)度?

【答案】(1)-20,10-5t;(2)線段MN的長(zhǎng)度不發(fā)生變化,都等于15.(3)13秒或17

【解析】

(1)根據(jù)已知可得B點(diǎn)表示的數(shù)為10-30;點(diǎn)P表示的數(shù)為10-5t;

(2)分類討論:①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),利用中點(diǎn)的定義和線段的和差易求出MN.

(3) 分①點(diǎn)P、Q相遇之前,②點(diǎn)P、Q相遇之后,根據(jù)P、Q之間的距離恰好等于2列出方程求解即可;

解:(1))∵點(diǎn)A表示的數(shù)為10,BA點(diǎn)左邊,AB=30,

數(shù)軸上點(diǎn)B表示的數(shù)為10-30=-20;

∵動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,

∴點(diǎn)P表示的數(shù)為10-5t;
故答案為:-20,10-5t;

(2)線段MN的長(zhǎng)度不發(fā)生變化,都等于15.理由如下:
①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),

∵M(jìn)為線段AP的中點(diǎn),N為線段BP的中點(diǎn),

∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;
②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí):

∵M(jìn)為線段AP的中點(diǎn),N為線段BP的中點(diǎn),

∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,
∴綜上所述,線段MN的長(zhǎng)度不發(fā)生變化,其值為15.

(3)若點(diǎn)P、Q同時(shí)出發(fā),設(shè)點(diǎn)P運(yùn)動(dòng)t秒時(shí)與點(diǎn)Q距離為4個(gè)單位長(zhǎng)度.
①點(diǎn)P、Q相遇之前,
由題意得4+5t=30+3t,解得t=13;
②點(diǎn)P、Q相遇之后,
由題意得5t-4=30+3t,解得t=17.
答:若點(diǎn)P、Q同時(shí)出發(fā),1317秒時(shí)P、Q之間的距離恰好等于4;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在RtABC中,AB=AC,BAC=90°,過點(diǎn)A的直線l繞點(diǎn)A旋轉(zhuǎn),BDlD,CElE.

(1)試說明:DE=BD+CE.

(2)當(dāng)直線l繞點(diǎn)A旋轉(zhuǎn)到如圖②所示的位置時(shí),(1)中結(jié)論是否成立?若成立,請(qǐng)說明;若不成立,請(qǐng)?zhí)骄?/span>DE,BD,CE又有怎樣的數(shù)量關(guān)系,并寫出探究過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017黑龍江省齊齊哈爾市,第25題,10分)低碳環(huán)保,綠色出行的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時(shí)從家騎自行車去圖書館,爸爸先以150/分的速度騎行一段時(shí)間,休息了5分鐘,再以m/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時(shí)間x(分鐘)的關(guān)系如圖,請(qǐng)結(jié)合圖象,解答下列問題:

(1)a= ,b= ,m= ;

(2)若小軍的速度是120/分,求小軍在途中與爸爸第二次相遇時(shí),距圖書館的距離;

(3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時(shí)與小軍相距100米?

(4)若小軍的行駛速度是v/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請(qǐng)直接寫出v的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果對(duì)于某一特定范圍內(nèi)的x的任意允許值,P=|10﹣2x|+|10﹣3x|+|10﹣4x|+|10﹣5x|+…+|10﹣10x|為定值,則此定值是(  )

A. 20 B. 30 C. 40 D. 50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點(diǎn) A、B 到表示-2 的點(diǎn)的距離都為 6,P 為線段 AB 上任一點(diǎn),C,D 兩點(diǎn)分別從 P,B 同時(shí)向 A 點(diǎn)移動(dòng), C 點(diǎn)運(yùn)動(dòng)速度為每秒 2 個(gè)單位長(zhǎng)度,D 點(diǎn)運(yùn)動(dòng)速度 為每秒 3 個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為 t .

(1)A 點(diǎn)表示數(shù)為 ,B 點(diǎn)表示的數(shù)為 ,AB= .

(2)若 P 點(diǎn)表示的數(shù)是 0,

①運(yùn)動(dòng) 1 秒后,求 CD 的長(zhǎng)度;

②當(dāng) D BP 上運(yùn)動(dòng)時(shí),求線段 AC、CD 之間的數(shù)量關(guān)系式.

(3)若 t=2 秒時(shí),CD=1,請(qǐng)直接寫出 P 點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請(qǐng)你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對(duì)“你最喜愛的課外活動(dòng)項(xiàng)目”對(duì)全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.

根據(jù)以上信息解決下列問題:
(1) ,
(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對(duì)應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項(xiàng)目的 名學(xué)生中隨機(jī)選取 名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的 名學(xué)生中恰好有 名男生、 名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知是等腰直角三角形,,點(diǎn)DBC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DGDE上,連接AEBG

試猜想線段BGAE的數(shù)量關(guān)系是______;

將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)

判斷中的結(jié)論是否仍然成立?請(qǐng)利用圖2證明你的結(jié)論;

,當(dāng)AE取最大值時(shí),求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,ABC中,AB=AC,BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和AB重合),BECDE,交直線ACF.

1)點(diǎn)D在邊AB上時(shí),試探究線段BD、ABAF的數(shù)量關(guān)系,并證明你的結(jié)論;

2)點(diǎn)DAB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?若不成立,請(qǐng)直接寫出正確結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案