古希臘數(shù)學家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當時古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解.在歐幾里得的《幾何原本》中,形如x2+ax=b2(a>0,b>0)的方程的精英家教網(wǎng)圖解法是:如圖,以
a
2
和b為兩直角邊作Rt△ABC,再在斜邊上截取BD=
a
2
,則AD的長就是所求方程的解.
(1)請用含字母a、b的代數(shù)式表示AD的長.
(2)請利用你已學的知識說明該圖解法的正確性,并說說這種解法的遺憾之處.
分析:(1)先根據(jù)勾股定理求得AB的長,再求AD的長.
(2)正確性:形象直觀;遺憾之處:圖解法不能表示方程的負根.
解答:解:(1)∵∠C=90°,BC=
a
2
,AC=b,
∴AB=
b2+
a2
4
,
∴AD=
b2+
a2
4
-
a
2
=
4b2+a2
-a
2
;

(2)用求根公式求得:x1=
-
4b2+a2
-a
2
;x2=
4b2+a2
-a
2
(2分)
正確性:AD的長就是方程的正根.
遺憾之處:圖解法不能表示方程的負根.(2分)
點評:本題考查了一元二次方程的解法-公式法,解一元二次方程的方法有:直接開平方法、公式法、配方法、因式分解法,要根據(jù)方程的特點進行選擇即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

古希臘數(shù)學家丟番圖,被人們稱為“代數(shù)學之父”.對于他的生平事跡,人們知道得很少,但在一本《希臘詩文選》中,收錄了他的墓志銘:“墳中安葬著丟番圖,多么令人驚訝,它忠實地記錄了他所經(jīng)歷的道路.上帝給予的童年占六分之一,又過十二分之一,兩頰長胡,再過七分之一,點燃起結(jié)婚的蠟燭.五年之后天賜貴子,可憐遲到的寧馨兒,享年僅及其父之半,便進入冰冷的墓.悲傷只有用數(shù)論的研究去彌補,又過四年,他也走完了人生的旅途.”你知道丟番圖活了多少歲嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

古希臘數(shù)學家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當時古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解.在歐幾里得的《幾何原本》中,形如x2+ax=b2(a>0,b>0)的方程的圖解法是:如圖,以數(shù)學公式和b為兩直角邊作Rt△ABC,再在斜邊上截取BD=數(shù)學公式,則AD的長就是所求方程的解.
(1)請用含字母a、b的代數(shù)式表示AD的長.
(2)請利用你已學的知識說明該圖解法的正確性,并說說這種解法的遺憾之處.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

古希臘數(shù)學家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當時古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取,則AD的長就是所求方程的解。

(1)請用含字母a、b的代數(shù)式表示AD的長。

(2)請利用你已學的知識說明該圖解法的正確性,并說說這種解法的遺憾之處。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

古希臘數(shù)學家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當時古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取,則AD的長就是所求方程的解。

(1)請用含字母a、b的代數(shù)式表示AD的長。

(2)請利用你已學的知識說明該圖解法的正確性,并說說這種解法的遺憾之處。

查看答案和解析>>

同步練習冊答案