【題目】我市在創(chuàng)建全國文明城市的過程中,某社區(qū)在甲樓的處與處之間懸掛了一幅宣傳條幅,在乙樓頂部點(diǎn)測得條幅頂端點(diǎn)的仰角為45°,測得條幅底端點(diǎn)的俯角為30°,若甲、乙兩樓之間的水平距離為12米.
(1)甲樓比乙樓高多少米?
(2)求條幅AE的長度.(結(jié)果保留根號)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面長為34米的墻,用鐵柵欄圍成一個矩形自行車場地ABCD,在AB和BC邊各有一個2米寬的小門(不用鐵柵欄).設(shè)矩形ABCD的邊AD長為x米,AB長為y米,矩形的面積為S平方米,且x<y.
(1)若所用鐵柵欄的長為40米,求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)在(1)的條件下,求S與x的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場地的面積為192平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國互聯(lián)網(wǎng)發(fā)展走到了世界的前列,尤其是電子商務(wù),據(jù)市場調(diào)查,天貓超市在銷售一種進(jìn)價為每件40元的護(hù)眼臺燈中發(fā)現(xiàn):每月銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系如圖所示:
(1)當(dāng)銷售單價定為50元時,求每月的銷售件數(shù);
(2)設(shè)每月獲得的利潤為W(元),求利潤的最大值;
(3)由于市場競爭激烈,這種護(hù)眼燈的銷售單價不得高于75元,如果要每月獲得的利潤不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC:BC:AB=3:4:5,⊙O沿著△ABC的內(nèi)部邊緣滾動一圈,若⊙O的半徑為1,且圓心O運(yùn)動的路徑長為18,則△ABC的周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中為真命題的是( )
A.長度為的三條線段若滿足,則這三條線段一定能組成三角形
B.一個三角形的三個內(nèi)角度數(shù)之比為3:4:5,則這個三角形是直角三角形
C.正六邊形的外角和大于正五邊形的外角和
D.若與相似,且周長相等,則與全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)的圖象交于A、B點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的半標(biāo)為(﹣2,3)
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)如圖,若將點(diǎn)C沿y軸向上平移4個單位長度至點(diǎn)F,連接AF、BF,求△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,∠A=120°,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)P是對角線BD上一動點(diǎn),設(shè)PD的長度為x,PE與PC的長度和為y,圖2是y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點(diǎn),則a+b的值為( )
A.7B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于、兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.
(1)求二次函數(shù)的解析式和直線的解析式;
(2)點(diǎn)是直線上的一個動點(diǎn),過點(diǎn)作軸垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時,求線段長度的最大值;
(3)在拋物線上是否存在異于、的點(diǎn),使中邊上的高?若存在求出點(diǎn)的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com