【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(
A.
B.
C.
D.

【答案】D
【解析】解:解法一:逐項分析 A、由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=﹣mx2+2x+2開口方向朝上,與圖象不符,故A選項錯誤;
B、由函數(shù)y=mx+m的圖象可知m<0,對稱軸為x= = = <0,則對稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項錯誤;
C、由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=﹣mx2+2x+2開口方向朝下,與圖象不符,故C選項錯誤;
D、由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=﹣mx2+2x+2開口方向朝上,對稱軸為x= = = <0,則對稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項正確;
解法二:系統(tǒng)分析
當(dāng)二次函數(shù)開口向下時,﹣m<0,m>0,
一次函數(shù)圖象過一、二、三象限.
當(dāng)二次函數(shù)開口向上時,﹣m>0,m<0,
對稱軸x= <0,
這時二次函數(shù)圖象的對稱軸在y軸左側(cè),
一次函數(shù)圖象過二、三、四象限.
故選:D.
本題主要考查一次函數(shù)和二次函數(shù)的圖象所經(jīng)過的象限的問題,關(guān)鍵是m的正負的確定,對于二次函數(shù)y=ax2+bx+c,當(dāng)a>0時,開口向上;當(dāng)a<0時,開口向下.對稱軸為x= ,與y軸的交點坐標(biāo)為(0,c).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=90°,A=30°,AB的垂直平分線分別交ABAC于點D,E.

(1)求證:AE=2CE;

(2)連接CD,請判斷BCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫出函數(shù)的圖象,利用圖象求解下列問題:

(1)求方程的解;

(2)求不等式的解集;

(3)若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC中,∠CAB=90°,AC=AB,點D、EBC上的兩點,且∠DAE=45°,ADCADF關(guān)于直線AD對稱.

(1)求證:AEF≌△AEB;

(2)DFE=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F

1求證:ABE≌△CAD;2BFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OP∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.

請你參考這個作全等三角形的方法,解答下列問題:

(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC∠BCA的平分線,AD、CE相交于點F,求∠EFA的度數(shù);

(2)在(1)的條件下,請判斷FEFD之間的數(shù)量關(guān)系,并說明理由;

(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問在(2)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016甘肅省白銀市)如圖,在平面直角坐標(biāo)系中,ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.

(1)畫出ABC關(guān)于x軸的對稱圖形A1B1C1;

(2)將A1B1C1沿x軸方向向左平移3個單位后得到A2B2C2,寫出頂點A2,B2C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為3的等邊三角形,BDC是等腰三角形,且BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則AMN的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC.BD相交于點O , 過點OOEACADE , 若AB=6,AD=8,求sinOEA的值

查看答案和解析>>

同步練習(xí)冊答案