已知:如圖,在直角梯形ABCD中,BC∥AD (AD>BC),BC⊥AB,AB=8,BC=6.動(dòng)點(diǎn)E、F分別在邊BC和AD上,且AF=2EC.線段EF與AC相交于點(diǎn)G,過點(diǎn)G作GH∥AD,交CD于點(diǎn)H,射線精英家教網(wǎng)EH交AD的延長線于點(diǎn)M,交AC于點(diǎn)O,設(shè)EC=x.
(1)求證:AF=DM;
(2)當(dāng)EM⊥AC時(shí),用含x的代數(shù)式表達(dá)AD的長;
(3)在(2)題條件下,若以MO為半徑的⊙M與以FD為半徑的⊙F相切,求x的值.
分析:(1)利用平行線分線段成比例的知識即可得出;
(2)易得
EC
AM
=
CO
AO
,故分別用含AD和x的代數(shù)式表示出EC、CO、AM和AO,代入即可得出含x的代數(shù)式表達(dá)的AD;
(3)結(jié)合題意可知,需要分兩種情況來解,一種是外切,另一種是內(nèi)切;分別根據(jù)切線的性質(zhì),結(jié)合題目,列出方程即可得出x的值.
解答:(1)證明:∵BC∥AD,
EC
AF
=
CG
AG
,
EC
DM
=
CH
DH
,(2分)
∵GH∥AD,
CG
AG
=
CH
DH
,(1分)
EC
AF
=
EC
DM
,
∴AF=DM.(1分)

(2)解:∵AB⊥BC,AB=8,BC=6,
∴AC=10,
∵BC⊥AB,EM⊥AC,
cos∠ACB=
BC
AC
=
CO
EC
,(1分)
∵EC=x,
6
10
=
CO
x
,
CO=
3
5
x
,(1分)
∵AF=2EC,由(1)知AF=DM,
∴DM=2EC,
∴DM=2x,
∵EC∥AM,
EC
AM
=
CO
AO
,(1分)
x
AD+2x
=
3
5
x
10-
3
5
x
,
AD=
50-9x
3
.(1分)

(3)解:∵EM⊥AC,設(shè)AD=a,
∴FD=a-2x,MO=
4
5
(a+2x)
,(1分)
FM=FD+DM=FD+AF=AD=a,
當(dāng)⊙F與⊙M相外切時(shí),F(xiàn)D+MO=FM;
a-2x+
4
5
(a+2x)=a

解得x=
100
21
,(1分)
∵AD>BC,即a>6,
x=
100
21
,得a=
50
21
<6
,與已知不符,
x=
100
21
(舍);(1分)
當(dāng)⊙F與⊙M相內(nèi)切時(shí),|FD-MO|=FM,
a-2x-
4
5
(a+2x)=a
,無解;(1分)
4
5
(a+2x)-(a-2x)=a

解,得x=
25
9
a=
25
3
,
∵2x<a,a>6,
x=
25
9
.(2分)
綜上所述,滿足條件的x的值為
25
9
點(diǎn)評:本題主要考查了切線的性質(zhì)以及平行線成比例的知識和解直角三角形等知識,并且要結(jié)合實(shí)際情況對題目分情況討論和對解的值進(jìn)行合理的取舍,本題具有一定的難度,請同學(xué)們多加分析和理解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期相交線與平行線專項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動(dòng)點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)

單位長度的速度向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個(gè)單位長度的速度向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止

運(yùn)動(dòng),設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時(shí)△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過原點(diǎn)O時(shí),請直接寫出t的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期平移專項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動(dòng)點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)

單位長度的速度向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個(gè)單位長度的速度向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止

運(yùn)動(dòng),設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時(shí)△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過原點(diǎn)O時(shí),請直接寫出t的值.

 

查看答案和解析>>

同步練習(xí)冊答案