【題目】如圖,平行四邊形ABCD的頂點(diǎn)A、C在雙曲線y1=﹣ 上,B、D在雙曲線y2= 上,k1=2k2(k1>0),AB∥y軸,SABCD=24,則k1=

【答案】8
【解析】解:在ABCD中,AB∥CD,AB=CD(平行四邊形的對(duì)應(yīng)邊平行且相等),故設(shè)A(x,y1)、B(x、y2),則根據(jù)反比例函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱的性質(zhì)知,C(﹣x,﹣y1)、D(﹣x、﹣y2).

∵A在雙曲線y1=﹣ 上,B在雙曲線y2= 上,

∴x=﹣ ,x=

∴﹣ = ;

又∵k1=2k2(k1>0),

∴y1=﹣2y2;

∵SABCD=24,

|2x|=6|y2x|=24,

解得,y2x=±4,

∵雙曲線y2= 位于第一、三象限,

∴k2=4,

∴k1=2k2=8

故答案是:8.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當(dāng)x取何值時(shí),反比例函數(shù)的值大于一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在七年級(jí)設(shè)立了六個(gè)課外興趣小組,每個(gè)參加者只能參加一個(gè)興趣小組,如圖是六個(gè)興趣小組不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖. 根據(jù)圖中信息,可得下列結(jié)論不正確的是( )

A.七年級(jí)共有320人參加了興趣小組
B.體育興趣小組對(duì)應(yīng)扇形圓心角的度數(shù)為96°
C.美術(shù)興趣小組對(duì)應(yīng)扇形圓心角的度數(shù)為72°
D.各小組人數(shù)組成的數(shù)據(jù)中位數(shù)是56.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,AD=BD,BEAD邊上的高,∠EBD=28°,則∠A的度數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線ACBD交于點(diǎn)O,經(jīng)過(guò)點(diǎn)O的直線交ABE,交CDF.

1)求證:OE=OF;

2)連結(jié)DE、BF,試說(shuō)明四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A.

(1)判斷直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣1)2017﹣(﹣ ﹣3+(cos68°﹣2)0+|4 ﹣8sin60°|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線、、分別交于點(diǎn)、、,點(diǎn)在直線上且不與點(diǎn)、、重合.記,,

1)若點(diǎn)在圖(1)位置時(shí),求證:;

2)若點(diǎn)在圖(2)位置時(shí),請(qǐng)直接寫(xiě)出、、之間的關(guān)系;

3)若點(diǎn)在圖(3)位置時(shí),寫(xiě)出、之間的關(guān)系并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)a使關(guān)于x的不等式組 無(wú)解,且使關(guān)于x的分式方程 =﹣3有正整數(shù)解,則滿足條件的a的值之積為( )
A.28
B.﹣4
C.4
D.﹣2

查看答案和解析>>

同步練習(xí)冊(cè)答案