【題目】如圖,一個(gè)邊長(zhǎng)為4cm的等邊三角形ABC的高與⊙O的直徑相等.⊙OBC相切于點(diǎn)C,與AC相交于點(diǎn)E,則劣弧的長(zhǎng)=_____

【答案】πcm

【解析】

連接OC、OE,作ADBCD,作OFACF,根據(jù)正弦的定義求出AD,根據(jù)切線的性質(zhì)得到OCBC,然后求出劣弧所對(duì)的圓心角及⊙O的半徑,再利用弧長(zhǎng)公式計(jì)算即可.

解:連接OC、OE,作ADBCD,作OFACF,

RtABD中,ADABsinBABsin60°,

BC為⊙O的切線,

OCBC

∴∠OCE90°60°30°,OCOE

∴∠OCE=∠OEC,

∴∠COE180°30°30°120°

∴劣弧的長(zhǎng)=π

故答案為:πcm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是某浴室花灑實(shí)景圖,圖2是該花灑的側(cè)面示意圖.已知活動(dòng)調(diào)節(jié)點(diǎn)B可以上下調(diào)整高度,離地面CD的距離BC160cm.設(shè)花灑臂與墻面的夾角為α,可以扭動(dòng)花灑臂調(diào)整角度,且花灑臂長(zhǎng)AB30cm.假設(shè)水柱AE垂直AB直線噴射,小華在離墻面距離CD120cm處淋。

1)當(dāng)α30°時(shí),水柱正好落在小華的頭頂上,求小華的身高DE

2)如果小華要洗腳,需要調(diào)整水柱AE,使點(diǎn)E與點(diǎn)D重合,調(diào)整的方式有兩種:

其他條件不變,只要把活動(dòng)調(diào)節(jié)點(diǎn)B向下移動(dòng)即可,移動(dòng)的距離BF與小華的身高DE有什么數(shù)量關(guān)系?直接寫出你的結(jié)論;

活動(dòng)調(diào)節(jié)點(diǎn)B不動(dòng),只要調(diào)整α的大小,在圖3中,試求α的度數(shù).

(參考數(shù)據(jù):1.73sin8.6°≈0.15,sin36.9°≈0.60tan36.9°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一組有規(guī)律的圖案,它們是由邊長(zhǎng)相同的小正方形組成的,其中部分小正方形涂有陰影,依此規(guī)律,第2018個(gè)圖案中涂有陰影的小正方形個(gè)數(shù)為(  )

A.8073B.8072C.8071D.8070

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)對(duì)寧波市相關(guān)的市場(chǎng)物價(jià)調(diào)研,某批發(fā)市場(chǎng)內(nèi)甲種水果的銷售利潤(rùn)y1(千元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系,乙種水果的銷售利潤(rùn)(千元)與進(jìn)貨量x(噸)之間的函數(shù)關(guān)系近似于二次函數(shù),函數(shù)圖象如圖所示.

1)求出x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

2)如果該市場(chǎng)準(zhǔn)備進(jìn)甲、乙兩種水果共8噸,設(shè)乙水果的進(jìn)貨量為t噸,寫出這兩種水果所獲得的銷售利潤(rùn)之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種水果各進(jìn)多少噸時(shí),獲得的銷售利潤(rùn)之和最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點(diǎn)O⊙OAC相切于點(diǎn)D,BE⊥ABAC的延長(zhǎng)線于點(diǎn)E,與⊙O相交于G、F兩點(diǎn).

1)求證:AB⊙O相切;

2)若等邊三角形ABC的邊長(zhǎng)是4,求線段BF的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利達(dá)經(jīng)銷店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營(yíng)利潤(rùn),準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.

1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;

2)在遵循“薄利多銷”的原則下,問(wèn)每噸材料售價(jià)為多少時(shí),該經(jīng)銷店的月利潤(rùn)為9000元?

3)小靜說(shuō):“當(dāng)月利潤(rùn)最大時(shí),月銷售額也最大.”你認(rèn)為對(duì)嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y1y2分別是關(guān)于x的函數(shù),如果函數(shù)y1y2的圖象有交點(diǎn),那么稱y1,y2為“親密函數(shù)”,交點(diǎn)稱為函數(shù)y1y2的“親密點(diǎn)”;若兩函數(shù)圖象有兩個(gè)交點(diǎn),橫坐標(biāo)分別是x1x2,稱L|x1x2|為函數(shù)y1y2的“親密度”,特別地,若兩函數(shù)圖象只有一個(gè)交點(diǎn),則兩函數(shù)的“親密度”L0

1)已知一次函數(shù)y12x5與反比例函數(shù)y2,請(qǐng)判斷函數(shù)y1y2是否為“親密函數(shù)”,若是,請(qǐng)寫出“親密點(diǎn)”及“親密度”L,若不是,請(qǐng)說(shuō)明理由;

2)已知二次函數(shù)yax26x+cx軸只有一個(gè)交點(diǎn),與一次函數(shù)yx1的“親密度”L3,求二次數(shù)的解析式;

3)已知“親密函數(shù)”y1ax2y2的“親密度”L0,“親密點(diǎn)”為Px0,y0),將過(guò)P的拋物線yax2+bx+cb0)進(jìn)行平移,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P11m,2b1),平移后的拋物線仍經(jīng)過(guò)點(diǎn)P,當(dāng)m≥﹣時(shí),求平移后拋物線的頂點(diǎn)所能達(dá)到的最高點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(定義[a,b,c]為函數(shù)的特征數(shù),下面給出特征數(shù)為 [2m,1-m,-1-m]的函數(shù)的一些結(jié)論:

當(dāng)m=-3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,;

當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長(zhǎng)度大于;

當(dāng)m<0時(shí),函數(shù)在時(shí),y隨x的增大而減小;

當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過(guò)x軸上一個(gè)定點(diǎn).

其中正確的結(jié)論有________ .(只需填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點(diǎn)O,使OB=OC,以點(diǎn)O為圓心,OB為半徑作圓,過(guò)點(diǎn)C作CD∥AB交⊙O于點(diǎn)D,連接BD.

(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;

(2)試判斷四邊形BOCD的形狀,并證明你的判斷;

(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.

查看答案和解析>>

同步練習(xí)冊(cè)答案