【題目】已知菱形在平面直角坐標(biāo)系的位置如圖所示,頂點,,點是對角線上的一個動點,,點是對角線上的一個動點,,當(dāng)最短時,點的坐標(biāo)為(

A.B.C.D.

【答案】D

【解析】

如圖,連接ACOBK,作KHOAH.由四邊形ABCD 是菱形,推出ACOB,AC關(guān)于對角線OB對稱,推出PCPC,推出PCPDPAPD,所以當(dāng)D、P、A共線時,PCPD的值最小,求出直線OB與直線AD的交點即可解決問題.

解:如圖,連接ACOBK,作KHOAH

∵四邊形ABCD 是菱形,

ACOB,A、C關(guān)于對角線OB對稱,

PCPC,

PCPDPAPD,

∴當(dāng)D、PA共線時,PCPD的值最小,

RtOAK中,∵OKOA5,

AK,

KHOA

KH,OH

K4,2),

∴直線OK的解析式為

直線AD的解析式為,

解得:

OBAD的交點P′

∴當(dāng)點PP′重合時,CPDP最短時,點P的坐標(biāo)為,

故答案選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y1kx2+ax+a的圖象與x軸交于點A,B(點A在點B的左側(cè)),函數(shù)y2kx2+bx+b,的圖象與x軸交于點CD(點C在點D的左側(cè)),其中k≠0ab

1)求證:函數(shù)y1y2的圖象交點落在一條定直線上;

2)若ABCD,求a,bk應(yīng)滿足的關(guān)系式;

3)是否存在函數(shù)y1y2,使得BC為線段AD的三等分點?若存在,求的值,若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,已知直線ykx+m與拋物線yax2+bx+c分別交于x軸和y軸上同一點,交點分別是點B60)和點C0,6),且拋物線的對稱軸為直線x4;

1)試確定拋物線的解析式;

2)在拋物線的對稱軸上是否存在點P,使△PBC是直角三角形?若存在請直接寫出P點坐標(biāo),不存在請說明理由;

3)如圖2,點Q是線段BC上一點,且CQ,點My軸上一個動點,求△AQM的最小周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,圓內(nèi)接四邊形ABCDADBC,AB是⊙O的直徑.

1)求證:ABCD

2)如圖2,連接OD,作∠CBE2ABD,BEDC的延長線于點E,若AB6AD2,求CE的長;

3)如圖3,延長OB使得BHOB,DF是⊙O的直徑,連接FH,若BDFH,求證:FH是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市體育中考現(xiàn)場考試內(nèi)容有三項:50米跑為必測項目.另在立定跳遠(yuǎn)、實心球(二選一)和坐位體前屈、1分鐘跳繩(二選一)中選擇兩項.

1)每位考生有_________種選擇方案;

2)求小明與小剛選擇同種方案的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點,且與軸交于點,拋物線的對稱軸是直線

1)求拋物線的函數(shù)表達(dá)式;

2)拋物線與直線交于兩點,點在軸上且位于點的左側(cè),若以、為頂點的三角形與相似,求點的坐標(biāo);

3是直線上一動點,為拋物線上一動點,若為等腰直角三角形,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生課外閱讀情況,就學(xué)生每周閱讀時間隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果按性別整理如下:

女生閱讀時間人數(shù)統(tǒng)計表

閱讀時間(小時)

人數(shù)

占女生人數(shù)百分比

4

5

6

2

根據(jù)圖表解答下列問題:

1)在女生閱讀時間人數(shù)統(tǒng)計表中,  ,  ;

2)此次抽樣調(diào)查中,共抽取了  名學(xué)生,學(xué)生閱讀時間的中位數(shù)在  時間段;

3)從閱讀時間在22.5小時的5名學(xué)生中隨機抽取2名學(xué)生參加市級閱讀活動,恰好抽到男女生各一名的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)y=ax-1)(x-a),其中a是常數(shù),且a0

1)當(dāng)a=2時,試判斷點(-,-5)是否在該函數(shù)圖象上.

2)若函數(shù)的圖象經(jīng)過點(1-4),求該函數(shù)的表達(dá)式.

3)當(dāng)-1≤x+1時,yx的增大而減小,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.

1求∠CDE的度數(shù);

2求證:DF是⊙O的切線;

3若AC=2DE,求tan∠ABD的值.

查看答案和解析>>

同步練習(xí)冊答案