【題目】在圓O中,弦AB∥弦CD,AB=24,CD=10,弦AB的弦心距為5,則AB和CD之間的距離是_____ .
【答案】7或17
【解析】
根據(jù)題意畫出圖形,由于AB、CD在圓心的同側(cè)或異側(cè)不能確定,故應(yīng)分兩種情況進(jìn)行討論.
解:①當(dāng)AB、CD在圓心的同側(cè),如圖(一)所示時(shí),過(guò)O作OE⊥CD,交AB于F,連接OA、OC,
由垂徑定理可知AF=
AB=×24=12,CE=CD=×10=5,
在Rt△AOF中,OA==13;
所以OC=13,
在Rt△ACOE中,OE==12,
故EF=OE-OF=12-5=7;
②當(dāng)AB、CD在圓心的異側(cè),如圖(二)所示時(shí),過(guò)O作OE⊥CD,交AB于F,連接OA、OC,
同(一)可知:OE=12,OF=5,EF=OE+OF=12+5=17;
故答案為:7或17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為更好地開展“傳統(tǒng)文化進(jìn)校園”活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛(ài)的傳統(tǒng)文化項(xiàng)目類型(分為書法、圍棋、戲劇、國(guó)畫共4類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.
最喜愛(ài)的傳統(tǒng)文化項(xiàng)目類型頻數(shù)分布表
根據(jù)以上信息完成下列問(wèn)題:
(1)直接寫出頻數(shù)分布表中a的值;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛(ài)圍棋的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了預(yù)測(cè)本校九年級(jí)男生畢業(yè)體育測(cè)試達(dá)標(biāo)情況,隨機(jī)抽取該年級(jí)部分男生進(jìn)行一次測(cè)試(滿分50分,成績(jī)均記為整數(shù)分),并按測(cè)試成績(jī)m(單位:分)分類:A類(45<m≤50),B類(40<m≤45),C類(35<m≤40),D類(m≤35)繪制出如圖所示的不完整條形統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)a= ,b= ,c= ;
成績(jī)等級(jí) | 人數(shù) | 所占百分比 |
A類(45 | 10 | 20% |
B類 | 22 | 44% |
C類 | a | b |
D類 | c |
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校九年級(jí)男生有600名,D類為測(cè)試成績(jī)不達(dá)標(biāo),請(qǐng)估計(jì)該校九年級(jí)男生畢業(yè)體育測(cè)試成績(jī)能達(dá)標(biāo)的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為4的正方形ABCD的一邊BC與直角邊分別是2和4的Rt△GEF的
一邊GF重合.正方形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿GE向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)A和點(diǎn)E重合時(shí)正方形停止運(yùn)
動(dòng).設(shè)正方形的運(yùn)動(dòng)時(shí)間為t秒,正方形ABCD與Rt△GEF重疊部分面積為s,則s關(guān)于t的函數(shù)圖象為
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).
三等分任意角問(wèn)題是數(shù)學(xué)史上一個(gè)著名的問(wèn)題,直到1837年,數(shù)學(xué)家才證明了“三等分任意角”是不能用尺規(guī)完成的.
在探索中,出現(xiàn)了不同的解決問(wèn)題的方法
方法一:
如圖(1),四邊形ABCD是矩形,F是DA延長(zhǎng)線上一點(diǎn),G是CF上一點(diǎn),CF與AB交于點(diǎn)E,且∠ACG=∠AGC,∠GAF=∠F,此時(shí)∠ECB=∠ACB.
方法二:
數(shù)學(xué)家帕普斯借助函數(shù)給出一種“三等分銳角”的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標(biāo)系中,邊OB在x軸上,邊OA與函數(shù)y=的圖象交于點(diǎn)P,以點(diǎn)P為圓心,以2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.過(guò)點(diǎn)P作x軸的平行線,過(guò)點(diǎn)R作y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠AOB,過(guò)點(diǎn)P作PH⊥x軸于點(diǎn)H,過(guò)點(diǎn)R作RQ⊥PH于點(diǎn)Q,則∠MOB=∠AOB.
(1)在“方法一”中,若∠ACF=40°,GF=4,求BC的長(zhǎng).
(2)完成“方法二”的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù),(k為常數(shù),k≠1).
(1)若點(diǎn)A(1,2)在這個(gè)函數(shù)的圖象上,求k的值;
(2)若在這個(gè)函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點(diǎn)B(3,4),C(2,5)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測(cè)速,所有車輛限速40千米/小時(shí).?dāng)?shù)學(xué)實(shí)踐活動(dòng)小組設(shè)計(jì)了如下活動(dòng):在l上確定A,B兩點(diǎn),并在AB路段進(jìn)行區(qū)間測(cè)速在l外取一點(diǎn)P,作PC⊥1,垂足為點(diǎn)C.測(cè)得PC=30米,∠APC=71°,∠BPC=35°,測(cè)得一汽車從點(diǎn)A到點(diǎn)B用時(shí)6秒,請(qǐng)你用所學(xué)的數(shù)學(xué)知識(shí)說(shuō)明該車是否超速?(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=3,點(diǎn)E在邊CD上,且CD=3DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.則BG的長(zhǎng)為( )
A. 1B. 2C. 1.5D. 2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形AOBC中,對(duì)角線交于點(diǎn)E,雙曲線y=(k>0)經(jīng)過(guò)A、E兩點(diǎn),若平行四邊形AOBC的面積為24,則k的值是( 。
A. 8B. 7.5C. 6D. 9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com