【題目】如圖,在平面直角坐標(biāo)系中,O為□ABCD的對稱中心,點(diǎn)A的坐標(biāo)為(-2,-2),AB=5,AB//x軸,反比例函數(shù)的圖象經(jīng)過點(diǎn)D,將□ABCD沿y軸向下平移,使點(diǎn)C的對應(yīng)點(diǎn)C'落在反比例函數(shù)的圖象上,則平移過程中線段AC掃過的面積為( )
A.24B.20C.18D.14
【答案】B
【解析】
根據(jù)O為ABCD的對稱中心,點(diǎn)A的坐標(biāo)為(-2,-2),AB=5,AB∥x軸,可求點(diǎn)B、D、C的坐標(biāo),進(jìn)而求出反比例函數(shù)的關(guān)系式,由平移可求出點(diǎn)C′的坐標(biāo),知道平移的距離,即平行四邊形的底,再根據(jù)點(diǎn)的坐標(biāo),可求出平行四邊形的高,最后根據(jù)面積公式求出結(jié)果.
解:∵點(diǎn)A的坐標(biāo)為(-2,-2),AB=5,AB∥x軸,
∴B(3,-2),
∵O為ABCD的對稱中心,
∴D(-3,2),C(2,2),
將D點(diǎn)坐標(biāo)代入反比例函數(shù)的關(guān)系式得,
將ABCD沿y軸向下平移,使點(diǎn)C的對應(yīng)點(diǎn)C′落在反比例函數(shù)的圖象上,
平移后,如圖, 當(dāng)x=2時(shí),
∴點(diǎn)C′(2,-3),
∴CC′=2-(-3)=5,
上的高為:
∴平行四邊形ACC′A′的面積為5×4=20,
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)表達(dá)式一利用函數(shù)圖象研究其性質(zhì)一運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程,在畫函數(shù)圖象時(shí),我們通過描點(diǎn)或平移的方法畫出了所學(xué)的函數(shù)圖象,同時(shí)我們也學(xué)習(xí)了絕對值的意義|a|,結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:在函數(shù)y=|kx﹣1|+b,當(dāng)x=1時(shí),y=﹣2;當(dāng)x=0時(shí),y=﹣1.
(1)求這個(gè)函數(shù)的表達(dá)式;
(2)請你結(jié)合以下表格在坐標(biāo)系中畫出該函數(shù)的圖象.
(3)觀察這個(gè)函效圖象,請寫出該函數(shù)的兩條性質(zhì);
(4)已知函數(shù)y=﹣(x>0)的圖象如圖所示,請結(jié)合圖象寫出|kx﹣1|﹣﹣b(x0)的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A(0,2),B(m, m-2),則AB+ OB的最小值是( )
A.B.4C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)A(2,-6),且與反比例函數(shù)y=-的圖象交于點(diǎn)B(a,4)
(1)求一次函數(shù)的解析式;
(2)將直線AB向上平移10個(gè)單位后得到直線l:y1=k1x+b1(k1≠0),l與反比例函數(shù)y2= 的圖象相交,求使y1<y2成立的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB=26,以AB為直徑的⊙O交AC邊于點(diǎn)D,點(diǎn)E在BC上,連結(jié)BD,DE,∠CDE=∠ABD.
(1)證明:DE是⊙O的切線;
(2)若sin∠CDE=,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當(dāng)⊙O與PA相切時(shí),圓心O平移的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交點(diǎn),拋物線過兩點(diǎn),與軸交于另一點(diǎn).
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)在直線上方的拋物線上是否存在點(diǎn),使與的交點(diǎn)恰好為的中點(diǎn)?如果存在,求出點(diǎn)的坐標(biāo),如果不存在,說明理由.
(3)若點(diǎn)在拋物線上且橫坐標(biāo)為,點(diǎn)是拋物線對稱軸上一點(diǎn),在拋物線上存在一點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,給出了格點(diǎn)四邊形ABCD(頂點(diǎn)為網(wǎng)格線的交點(diǎn)).
(1)畫出四邊形ABCD關(guān)于x軸成軸對稱的四邊形A1B1C1D1;
(2)以O為位似中心,在第三象限畫出四邊形ABCD的位似四邊形A2B2C2D2,且位似比為1;
(3)在第一象限內(nèi)找出格點(diǎn)P,使∠DCP=∠CDP,并寫出點(diǎn)P的坐標(biāo)(寫出一個(gè)即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com