【題目】如圖,已知C為線段AB上的一點(diǎn),△ACM和△CBN都是等邊三角形,AN和CM相交于F點(diǎn),BM和CN交于E點(diǎn).求證:△CEF是等邊三角形.
【答案】見解析
【解析】
由等邊三角形的性質(zhì)可得AC=CM,BC=CN,再利用角的和差可得到∠ACN=∠MCB,可證明△ACN≌△MCB,可得∠ENC=∠FBC,由條件可得∠ECF=60°,可證明△CEN≌△CFB,可得CE=CF,可知△CEF為等邊三角形.
證明:∵△ACM和△CBN是等邊三角形,
∴AC=MC,BC=CN,∠MCA=∠NCB=60°,
∴∠ACN=∠MCB=120°,
在△ACN和△MCB中,
,
∴△ACN≌△MCB(SAS),
∴∠ANC=∠MBC,
∵△ACM和△CBN是等邊三角形,
∴∠MCA=∠NCB=60°,
∴∠ECF=180°﹣60°﹣60°=60°,
在△CFN和△CEB中,
,
∴△CFN≌△CEB(ASA),
∴CE=CF,
∵∠ECF=60°,
∴△CEF為等邊三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將命題“在同圓中,相等的圓心角所對的弧相等,所對的弦也相等”改寫成“已知……求證……”的形式,下列正確的是( )
A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求證:AB=CD
B.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求證:AD=BC
C.已知:在⊙O中,∠AOB=∠COD.求證:弧AD=弧BC,AD=BC
D.已知:在⊙O中,∠AOB=∠COD.求證:弧AB=弧CD,AB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內(nèi)的點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1.過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)>>0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+4x+c(a≠0)與反比例函數(shù)y=的圖象相交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為5,拋物線與y軸交于點(diǎn)C(0,6),A是拋物線的頂點(diǎn),P和Q分別是x軸和y軸上的兩個(gè)動(dòng)點(diǎn),則AQ+QP+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,
(1)若二次函數(shù)y=mx2+nx+1經(jīng)過點(diǎn)(2,0),(3,1),試分別求出兩個(gè)函數(shù)的解析式.
(2)若一次函數(shù)y=mx+n經(jīng)過點(diǎn)(2,0),且圖象經(jīng)過第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過點(diǎn)(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.
(3)若二次函數(shù)y=mx2+nx+1的頂點(diǎn)坐標(biāo)為A(h,k)(h≠0),同時(shí)二次函數(shù)y=x2+x+1也經(jīng)過A點(diǎn),已知﹣1<h<1,請求出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,一臺(tái)燈放置在水平桌面上,底座AB與桌面垂直,底座高AB=5cm,連桿BC=CD=20cm,BC,CD與AB始終在同一平面內(nèi).
(1)如圖②,轉(zhuǎn)動(dòng)連桿BC,CD,使∠BCD成平角,∠ABC=143°,求連桿端點(diǎn)D離桌面l的高度DE.
(2)將圖②中的連桿CD再繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)16°,如圖③,此時(shí)連桿端點(diǎn)D離桌面l的高度減小了 cm.
(參考數(shù)據(jù):sin37°=0.6,cos37°=0.8,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在玩轉(zhuǎn)盤游戲時(shí),把兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤A、B分成4等份、3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標(biāo)上數(shù)字(如圖所示),指針的位置固定.游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,若指針?biāo)竷蓚(gè)區(qū)域的數(shù)字之和為3的倍數(shù),甲勝;若指針?biāo)竷蓚(gè)區(qū)域的數(shù)字之和為4的倍數(shù)時(shí),乙勝.如果指針落在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.
(1)試用列表或畫樹形圖的方法,求甲獲勝的概率;
(2)請問這個(gè)游戲規(guī)則對甲、乙雙方公平嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)P由點(diǎn)A出發(fā)沿AB方向向終點(diǎn)B勻速移動(dòng),速度為1cm/s,點(diǎn)Q由點(diǎn)B出發(fā)沿BC方向向終點(diǎn)C勻速移動(dòng),速度為2cm/s.如果動(dòng)點(diǎn)P,Q同時(shí)從A,B出發(fā),當(dāng)P或Q到達(dá)終點(diǎn)時(shí)運(yùn)動(dòng)停止.幾秒后,以Q,B,P為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,園林小組的同學(xué)用一段長16米的籬笆圍成一個(gè)一邊靠墻的矩形菜園ABCD,墻的長度為9米,設(shè)AB的長為x米,BC的長為y米.
(1)①寫出y與x的函數(shù)關(guān)系是: ;
②自變量x的取值范圍是 ;
(2)園林小組的同學(xué)計(jì)劃使矩形菜園的面積為30平方米,試求此時(shí)邊AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com