【題目】如圖,在中,為上一點(diǎn),以為圓心,長(zhǎng)為半徑作圓,與相切于點(diǎn),過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),且.
(1)求證:為的切線;
(2)若, ,求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)作OE⊥AB于點(diǎn)E,證明△OBC≌△OBE,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得OE=OC, OE是⊙O的半徑 ,OE⊥AB ,即可判定AB為⊙O的切線;
(2)根據(jù)題意先求出AO、BO的長(zhǎng),再證明△AOD∽△BOC,根據(jù)相似三角形對(duì)應(yīng)邊成比例即可求出AD的長(zhǎng).
(1)作OE⊥AB于點(diǎn)E,
∵切BC于點(diǎn)C,
∴OC⊥BC,∠ACB=90°,
∵ AD⊥BD,∴∠D=90°,
∴∠ABD+∠BAD =90°,∠CBD+∠BOC=90°,
∵∠BOC=∠AOD,∠AOD=∠BAD,
∴∠BOC=∠BAD,
∴∠ABD=∠CBD
在△OBC和△OBE中,
∴△OBC≌△OBE,
∴OE=OC,∴OE是⊙O的半徑 ,
∵OE⊥AB ,∴AB為⊙O的切線;
(2) ∵tan∠ABC=,BC=6,
∴AC=8,∴AB= ,
∵BE=BC=6,∴AE=4,
∵∠AOE=∠ABC,∴tan∠AOE= ,∴EO=3,
∴AO=5,OC=3,∴BO=,
在△AOD和△BOC中,
∴△AOD∽△BOC,∴ ,
即 ,∴AD= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】家庭過(guò)期藥品屬于“危險(xiǎn)廢物”,處理不當(dāng)將污染環(huán)境.某市藥監(jiān)部門(mén)為了了解市民家庭處理過(guò)期藥品的方式,決定對(duì)全市家庭做一次簡(jiǎn)單隨機(jī)抽樣調(diào)查.
(1)下列選取樣本的方法最合理的一種是____________.(只需填上正確答案的序號(hào))
①在市中心某個(gè)居民區(qū)以家庭為單位隨機(jī)抽;
②在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽;
③在全市常住人口中以家庭為單位隨機(jī)抽。
經(jīng)抽樣調(diào)查發(fā)現(xiàn),接受調(diào)查的家庭都有過(guò)期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:
(2)填空:m=______,n=_____;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)該市市民家庭處理過(guò)期藥品最常見(jiàn)的方式是 .(只填序號(hào))
(5)家庭過(guò)期藥品的正確處理方式是送回收點(diǎn),若該市有180萬(wàn)戶家庭,請(qǐng)估計(jì)大約有多少戶家庭處理過(guò)期藥品的方式是送回收點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形ABC中,AC=BC=4,∠A=30°,點(diǎn)D為AC的中點(diǎn),點(diǎn)E為邊AB上一個(gè)動(dòng)點(diǎn),連接DE,將△ADE沿直線DE折疊,點(diǎn)A落在點(diǎn)F處.當(dāng)直線EF與直線AC垂直時(shí),則AE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,4),OABC為矩形,反比例函數(shù) 的圖象過(guò)AB的中點(diǎn)D,且和BC相交于點(diǎn)E,F為第一象限的點(diǎn),AF=12,CF=13.
(1)求反比例函數(shù)和直線OE的函數(shù)解析式;
(2)求四邊形OAFC的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一把直尺,的直角三角板和光盤(pán)如圖擺放,為角與直尺交點(diǎn),,則光盤(pán)的直徑是( )
A. 3 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(1,0)、B(4,0)、C(0,3)三點(diǎn).
(1)求該拋物線的解析式;
(2)如圖,在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得四邊形PAOC的周長(zhǎng)最?若存在,求出四邊形PAOC周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,點(diǎn)Q是線段OB上一動(dòng)點(diǎn),當(dāng)△BPQ與△BAC相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,拋物線經(jīng)過(guò)點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達(dá)式;
(2)△BCD的面積等于△AOC的面積的時(shí),求的值;
(3)在(2)的條件下,若點(diǎn)M是軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com