【題目】某商店將進價為100元的某商品按120元的價格出售,可賣出300個;若商店在120元的基礎(chǔ)上每漲價1元,就要少賣10個,而每降價1元,就可多賣30個.

(1)求所獲利潤y (元)與售價x(元)之間的函數(shù)關(guān)系式;

(2)為獲利最大,商店應(yīng)將價格定為多少元?

(3)為了讓利顧客,且獲利最大,商店應(yīng)將價格定為多少元?

【答案】(1);(2)售價定為115元獲得最大為6750元;(3)115

【解析】

(1)以120元為基礎(chǔ),當漲價時,大于120元,當降價時,小于120元,利用每個商品的利潤×賣出數(shù)量=總利潤分別寫出函數(shù)關(guān)系式即可;

(2)利用配方法求得兩個函數(shù)解析式的最大值,比較得出答案;

(3)分別求出函數(shù)最值進而得出答案.

解:(1)當x>120時,

y1=﹣10x2+2500x﹣150000;

100<x<120時,

y2=﹣30x2+6900x﹣390000,

;

(2)y1=﹣10x2+2500x﹣150000=﹣10(x﹣125)2+6250;

y2=﹣30x2+6900x﹣390000=﹣30(x﹣115)2+6750;

6750>6250,

∴當售價定為115元時,獲得最大為6750元;

(3)由(2)可知,

當漲價x=5(元)時,所獲利潤y1的最大值=6250(元);

當降價x=5(元)時,所獲利潤y2的最大值=6750(元).

∴為獲利最大,應(yīng)降價5元,即將價格定為115元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC 中,∠C=90°,∠B=30°,以點 A 為圓心,任意長為半徑畫弧分別交 AB,AC 于點M N,再分別以 M,N 為圓心,大于 的長為半徑畫弧,兩弧交于點 P,連接 AP 并延長交 BC 于點D,則下列說法中:①AD 是∠BAC 的平分線;②點 D 在線段 AB 的垂直平分線上;③SDACSABC=12.正確的是( )

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=10,BC=12,E為DC的中點,連接BE,作AFBE,垂足為F

(1)求證:BECABF;

(2)求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為等邊三角形,,相交于點,于點,

(1)求證:

(2)求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知 ABC的三個頂點的坐標分別為A(-1,1), B(-3,1),C(-1,4).

①畫出ABC關(guān)于y軸對稱的A1B1C1;

②將ABC繞著點B順時針旋轉(zhuǎn)90°后得到A2BC2請在圖中畫出A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,花叢中有一路燈桿AB. 在燈光下,小明在D點處的影長DE=3米,沿BD方向行走到達G點,DG=5米,這時小明的影長GH=5. 如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于⊙O,DOC的延長線上,B=CAD=30°.

(1)AD是⊙O的切線嗎?為什么?

(2)ODAB,BC=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形例如:某三角形三邊長分別是5,68,因為,所以這個三角形是常態(tài)三角形.

(1)若△ABC三邊長分別是2,4,則此三角形 常態(tài)三角形(不是”);

(2)如圖,RtABC中,∠ACB=90°BC=6,點DAB的中點,連接CD,CD=AB, 若△ACD是常態(tài)三角形,求△ABC的面積;

(3)RtABC是常態(tài)△,斜邊是,則此三角形的兩直角邊的和= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ACBC,∠ACB90°,點DAB上,點EBC上,且ADBE,BDAC

1)求證:CDED

2)直接寫出圖中所有是∠ACD2倍的角.

查看答案和解析>>

同步練習冊答案