【題目】為兼顧季節(jié)性用水差異,大力推進(jìn)水資源節(jié)約,從2019年1月1日起,遵義市中心城區(qū)居民生活用水的階梯水量,將從“月計(jì)量”繳費(fèi)調(diào)整為“年計(jì)量”繳費(fèi)按“一戶一表”,居民家庭為3口人計(jì)算,階梯用水量及水價(jià)見下表:
年用水量(噸) | 水價(jià)(元/噸) | |
第一階梯 | 0~216(含216) | |
第二階梯 | 216~288(含288) | |
第三階梯 | 288以上 | 8.4 |
小明家和小剛家均為3口之家,2018年全年用水量分別為260噸和300噸,若按“年計(jì)量”繳費(fèi)標(biāo)準(zhǔn)計(jì)算,小明家和小剛家全年應(yīng)繳水費(fèi)分別為789.6元和1008元.
(1)求表中,的值;
(2)小剛家實(shí)施節(jié)水計(jì)劃,以2018年用水量為起點(diǎn),預(yù)計(jì)2020年用水量降到243噸,且從2018年到2020年每年用水量的平均下降率都相同,請按此下降率計(jì)算2021年小剛家用水量.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l為y=x,過點(diǎn)A1(1,0)作A1B1⊥x軸,與直線l交于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長為半徑畫圓弧交x軸于點(diǎn)A2;再作A2B2⊥x軸,交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長為半徑畫圓弧交x軸于點(diǎn)A3;……,按此作法進(jìn)行下去,則點(diǎn)An的坐標(biāo)為(_______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點(diǎn),P,M分別是AC,AB上的動點(diǎn),連接PE,PM,則PE+PM的最小值是( 。
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,是邊上一點(diǎn)(點(diǎn)不與點(diǎn)、重合),連結(jié).如圖①,過點(diǎn)作交于點(diǎn).易證.(不需要證明)如圖②,取的中點(diǎn),過點(diǎn)作交于點(diǎn),交于點(diǎn).
(1)求證:.
(2)連結(jié),若,求的長.
(3)如圖③,取的中點(diǎn),連結(jié).過點(diǎn)作交于點(diǎn),于點(diǎn),連結(jié)、.若,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=-+bx+c經(jīng)過A(-1,0)、B(5,0)兩點(diǎn),頂點(diǎn)為P.
求:(1)求b,c的值;
(2)求△ABP的面積;
(3)若點(diǎn)C(,)和點(diǎn)D(,)在該拋物線上,則當(dāng)時(shí),請寫出與的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅的父母開了一個(gè)小服裝店,出售某種進(jìn)價(jià)為元的服裝,現(xiàn)每件元,每星期可賣件.該同學(xué)對市場作了如下調(diào)查:每降價(jià)元,每星期可多賣件;每漲價(jià)元,每星期要少賣件.
小紅已經(jīng)求出在漲價(jià)情況下一個(gè)星期的利潤(元)與售價(jià)(元)(為整數(shù))的函數(shù)關(guān)系式為,請你求出在降價(jià)的情況下與的函數(shù)關(guān)系式;
在降價(jià)的條件下,問每件商品的售價(jià)定為多少時(shí),一個(gè)星期的利潤恰好為元?
問如何定價(jià),才能使一星期獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2﹣x+2與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接AC.
(1)求直線AC的解析式;
(2)如圖1,點(diǎn)P為直線AC上方拋物線上一動點(diǎn),過P作PD⊥AB,交AC于點(diǎn)E,點(diǎn)F是線段AC上一動點(diǎn),連接DF.當(dāng)△PAC的面積最大時(shí),求DF+AF的最小值;
(3)如圖2,將△OBC繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)60°得△OB′C′,點(diǎn)G是AC中點(diǎn),點(diǎn)H為直線OC′上一動點(diǎn),當(dāng)△GHB′為等腰三角形時(shí),直接寫出對應(yīng)的點(diǎn)H的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com