【題目】如圖,在中,,點上,以線段的長為半徑的相切于點,分別交、于點、,連接并延長交延長線于點

1)求證:

2)已知的半徑為5

①若,則__________

②連接,當(dāng)__________時,四邊形是菱形.

【答案】1)證明見解析;(2)①,②5

【解析】

1)由AD的切線推出,證得,推出∠OND,利用三角形的外角性質(zhì)即可得出結(jié)論;

(2)①由勾股定理求出AD的長,再利用ΔAOD∽ΔABC相似,即可求得CD的長;

②連接DM,OM,由菱形的性質(zhì)得DM的長,進(jìn)而求得MC,BC的長度,再利用ΔAOD∽ΔABC相似即可求得AN的長.

(1)證明:∵的切線,∴

,∴

又∵,∴

(2)①在RtΔAOD中,OD=5,OA=ON+AN=8+5=13,

AD==,

,

ΔAOD∽ΔABC,

,

CD=;

②如圖,連接OM,DM

當(dāng)四邊形OBMD為菱形時,DM=BM=OB=OD=5

OM=5

∴ΔOMD是等邊三角形,

∠ODM=60,

∴∠CDM=90-∠ODM=30,

RtΔMCD中,MC=DM=,

∴BC=BM+MC=5+=,

由①ΔAOD∽ΔABC,

,

AN=5,

當(dāng)AN=5時,當(dāng)四邊形OBMD為菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線x軸交于A-1,0),B30)兩點,與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖①,若點D是拋物線上一動點,設(shè)點D的橫坐標(biāo)為m0m3),連接CD,BD,BC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑作⊙O,交BC于點D,過點 DDEAC,垂足為E

1)求證:DE是⊙O的切線.

2)若⊙O的半徑為2,∠A60°,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ly=分別交x軸、y軸于點A和點A1,過點A1A1B1l,交x軸于點B1,過點B1B1A2x軸,交直線l于點A2;過點A2A2B2l,交x軸于點B2,過點B2B2A3x軸,交直線l于點A3;依此規(guī)律...若圖中陰影△A1OB1的面積為S1,陰影△A2B1B2的面積S2,陰影△A3B2B3的面積S3...,則Sn=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(,4),B(3,m)是直線AB與反比例函數(shù)x0)圖象的兩個交點.ACx軸,垂足為點C,已知D(0,1),連接AD,BDBC

1)求直線AB的表達(dá)式;

2ABCABD的面積分別為S1,S2,求S2S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于,兩點,與軸交于點,點是拋物線的頂點.

1)求拋物線的解析式;

2)點軸正半軸上的一點,,點在對稱軸左側(cè)的拋物線上運(yùn)動,直線交拋物線的對稱軸于點,連接,當(dāng)平分時,求點的坐標(biāo);

3)直線交對稱軸于點,是坐標(biāo)平面內(nèi)一點,當(dāng)全等時,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】植樹節(jié)來臨之際,學(xué)校準(zhǔn)備購進(jìn)一批樹苗,已知2棵甲種樹苗和5棵乙種樹苗共需113元;3棵甲種樹苗和2棵乙種樹苗共需87元.

(1)求一棵甲種樹苗和一棵乙種樹苗的售價各是多少元?

(2)學(xué)校準(zhǔn)備購進(jìn)這兩種樹苗共100棵,并且乙種樹苗的數(shù)量不多于甲種樹苗數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并求出此時的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,點OBC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點DBC的平行線與AC的延長線相交于點P.

(1)求證:PD是⊙O的切線;

(2)求證:△ABD∽△DCP;

(3)當(dāng)AB=5cm,AC=12cm時,求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作:在△ABC,AC=BC=4,C=90°,將一塊直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CBD、E兩點。如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況。

探究:

1)如圖①,PDACD,PEBCE,則重疊部分四邊形DCEP的面積為___,周長___.

2)三角板繞點P旋轉(zhuǎn),觀察線段PDPE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明;

3)三角板繞點P旋轉(zhuǎn),PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案