精英家教網 > 初中數學 > 題目詳情
已知,如圖點A(1,1),B(2,-3),點P為x軸上一點,當|PA-PB|最大時,點P的坐標為( 。
A.(
1
2
,0)
B.(
5
4
,0)
C.(-
1
2
,0)
D.(1,0)

作A關于x軸對稱點C,連接BC并延長交x軸于點P,
∵A(1,1),
∴C的坐標為(1,-1),
連接BC,
設直線BC的解析式為:y=kx+b,
k+b=-1
2k+b=-3
,
解得:
k=-2
b=1

∴直線BC的解析式為:y=-2x+1,
當y=0時,x=
1
2
,
∴點P的坐標為:(
1
2
,0),
∵當B,C,P不共線時,根據三角形三邊的關系可得:|PA-PB|=|PC-PB|<BC,
∴此時|PA-PB|=|PC-PB|=BC取得最大值.
故選A.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知一次函數圖象經過點A(1,-1)和B(-3,-9).
(1)求此一次函數的解析式;并畫出其圖象.
(2)求此一次函數與x軸,y軸的交點坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,將△ABC放在平面直角坐標系中,使B、C在X軸正半軸上,若AB=AC.且A點坐標為(3,2),B點坐標為(1,0).
(1)求邊AC所在直線的解析式;
(2)若坐標平面內存在三角形與△ABC全等且有一條公共邊,請寫出這些三角形未知頂點的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,(1)求直線AB的解析式;
(2)若點C是第一象限內的直線上的一個點,且△BOC的面積為2,求點C的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,直線l的解析式為y=-
4
3
x+4,它與x軸、y軸分別相交于A、B兩點,平行于直線l的直線m從原點O出發(fā),沿x軸的正方向以每秒1個單位長度的速度運動,它與x軸、y軸分別相交于M、N兩點,運動時間為t秒(0<t≤3)
(1)求A、B兩點的坐標;
(2)以MN為對角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S,試探究S與t之間的函數關系;
(3)當S=2時,是否存在點R,使△RNM△AOB?若存在,求出R的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線y=-
1
2
x+b(b>0)
分別交x軸、y軸于A、B兩點.點C(4,0)、D(8,0),以CD為一邊在x軸上方作矩形CDEF,且CF:CD=1:2.設矩形CDEF與△ABO重疊部分的面積為S.
(1)求點E、F的坐標;
(2)當b值由小到大變化時,求S與b的函數關系式;
(3)若在直線y=-
1
2
x+b(b>0)
上存在點Q,使∠OQC等于90°,請直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,△ABC為等腰三角形,AB=AC,將△AOC沿直線AC折疊,點O落在直線AD上的點E處,直線AD的解析式為y=-
3
4
x+6
,則
(1)AO=______;AD=______;OC=______;
(2)動點P以每秒1個單位的速度從點B出發(fā),沿著x軸正方向勻速運動,點Q是射線CE上的點,且∠PAQ=∠BAC,設P運動時間為t秒,求△POQ的面積S與t之間的函數關系式;
(3)在(2)的條件下,直線CE上是否存在一點Q,使以點Q、A、D、P為頂點的四邊形是平等四邊形?若存在,求出t值及Q點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

有一個附有進水管、出水管的水池,每單位時間內進出水管的進、出水量都是一定的,設從某時刻開始,4h內只進水不出水,在隨后的時間內不進水只出水,得到的時間x(h)與水量y(m3)之間的關系圖(如圖).回答下列問題:
(1)進水管4h共進水多少?每小時進水多少?
(2)當0≤x≤4時,y與x有何關系?
(3)當x=9時,水池中的水量是多少?
(4)若4h后,只放水不進水,那么多少小時可將水池中的水放完?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在平面直角坐標中,已知A、C兩點的坐標分別為A(
5
,
5
)、C(3
5
,0).
(1)求△OAC的面積.
(2)在第一、二象限內是否存在點B,使以O、A、B、C為頂點的四邊形為平行四邊形?若存在,請求出所有符合條件的點B的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案