精英家教網(wǎng)如圖,已知矩形OABC的面積為18,它的對(duì)角線OB與雙曲線y=
kx
相交于點(diǎn)D,且OD:DB=2:1,則k=
 
分析:利用OD:DB=2:1,即OD:OB=2:3,得點(diǎn)B的縱橫坐標(biāo)為點(diǎn)D的
3
2
倍;然后利用矩形OABC的面積=|
3
2
xD×
3
2
yD|=8,從而確定出k的值,
解答:解:由題意,設(shè)點(diǎn)D的坐標(biāo)為(xD,yD),則點(diǎn)B的坐標(biāo)為(
3
2
xD,
3
2
yD).
∴矩形OABC的面積=|
3
2
xD×
3
2
yD|=18,
∵圖象有第一象限,
∴k=xD•yD=8.
故答案為:8.
點(diǎn)評(píng):此題考查了反比例函數(shù)系數(shù)k的幾何意義,關(guān)鍵是能夠熟練根據(jù)矩形的面積公式,求得點(diǎn)D的橫、縱坐標(biāo)的乘積,從而求得k值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:正△OAB的面積為4
3
,雙曲線y=
k
x
經(jīng)過點(diǎn)B,點(diǎn)P(m,n)(m>0)在雙曲線y=
k
x
上,PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D,設(shè)矩形OCPD與正△OAB不重疊部分的面積為S.
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)求m=1和m=3時(shí),S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點(diǎn)D作DE垂直O(jiān)A的延精英家教網(wǎng)長(zhǎng)線交于點(diǎn)E.
(1)證明:△OAB∽△EDA;
(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?請(qǐng)說明理由,并求出此時(shí)點(diǎn)C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)

如圖,已知OA⊥OB,OA=8,OB=6,以AB為邊作矩形ABCD,使AD=a,過點(diǎn)D作DE垂直O(jiān)A的延長(zhǎng)線交于點(diǎn)E.

(1)求證:△OAB∽△EDA;                               

(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?并求出此時(shí)點(diǎn)C到OE的距離.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆河北省唐山路南數(shù)學(xué)三模試卷 題型:解答題

(本題滿分10分)

如圖,已知OA⊥OB,OA=8,OB=6,以AB為邊作矩形ABCD,使AD=a,過點(diǎn)D作DE垂直O(jiān)A的延長(zhǎng)線交于點(diǎn)E.
(1)求證:△OAB∽△EDA;                               
(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?并求出此時(shí)點(diǎn)C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省啟東市九年級(jí)中考適應(yīng)性考試(一模)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知OAOB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD,過點(diǎn)DDE垂直OA的延長(zhǎng)線且交于點(diǎn)E.(1)求證:△OAB∽△EDA

(2)當(dāng)為何值時(shí),△OAB與△EDA全等?請(qǐng)說明理由;并求出此時(shí)B、D兩點(diǎn)的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案