某校為了解“課程選修”的情況,對報名參加“藝術(shù)鑒賞”,“科技制作”,“數(shù)學(xué)思維”,“閱讀寫作”這四個選修項目的學(xué)生(每人限報一課)進行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調(diào)查了______名學(xué)生,扇形統(tǒng)計圖中“藝術(shù)鑒賞”部分的圓心角是______度;

(2)請把這個條形統(tǒng)計圖補充完整;

(3)現(xiàn)該校共有800名學(xué)生報名參加這四個選修項目,請你估計其中有多少名學(xué)生選修“科技制作”項目.


(1)200名,144°;(2)略;(3)120名.

【解析】(1)50÷25%=200(名);80÷200×360°=144°;(2)200-80-30-50=40(名)

(3)800×(30÷200)=120(名)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標系中,點A、C分別在x軸、y軸上,四邊形ABCO為矩形,AB=16,點D與點A關(guān)于y軸對稱,tan∠ACB=,點E、F分別是線段AD、AC上的動點(點E不與點A、D重合),且∠CEF=∠ACB.

(1)求AC的長和點D的坐標;

(2)說明△AEF與△DCE相似;

(3)當(dāng)△EFC為等腰三角形時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AF=DC,BC∥EF,只需補充一個條件              ,就得。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中E是BC上的一點,EC=2EB,點D是AC的中點,AE、BD交于點F,AF=3FE,若△ABC的面積為18,給出下列命題:①△ABE的面積為6;②△ABF的面積和四邊形DFEC的面積相等;③點F是BD的中點;④四邊形DFEC的面積為.其中,正確的結(jié)論有           .(把你認為正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE中點,連結(jié)DF、CF.

(1)如圖1, 當(dāng)點D在AB上,點E在AC上,請直接寫出此時線段DF、CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);

(2)如圖2,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)45°時,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷;

(3)如圖3,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)90°時,若AD=1,AC=,求此時線段CF的長(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若一次函數(shù)y=(m-3)x+5的函數(shù)值y隨x的增大而增大,則 (    )

A.m>0          B.m<0          C.m>3       D.m<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


B

【解析】連接EC,交AD于點P,次數(shù)EP+BP的值最小,過點E作EF⊥BC,則有BD=CD=2,由勾股定理,可

得AD=2,同時可得EF∥AD,△BEF∽△BAD,所以,解得BF=1.5,F(xiàn)D=0.5,EF=,所以EC==,所求的最小值是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在6×4方格紙中,格點三角形甲經(jīng)過旋轉(zhuǎn)后得到格點三角形乙,則其旋轉(zhuǎn)中心是(     )

A.點M       B.格點N      C.格點P    D.格點Q

查看答案和解析>>

同步練習(xí)冊答案