【題目】如圖,直角△ABC中,∠BAC=90°,D在BC上,連接AD,作BF⊥AD分別交AD于E,交AC于F.
(1)如圖(1),若BD=BA,求證:∠BAD=∠C+∠CAD;
(2)如圖(2),若 BD=4DC,取AB 的中點G,連接CG交AD于M,求證:①GM=2MC;②.
【答案】(1)詳見解析;(2)①詳見解析;②詳見解析
【解析】
(1)根據(jù)全等三角形的判定及性質(zhì)即可得到結(jié)論;
(2)①過G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根據(jù)已知條件設(shè)DC=1,BD=4,得到BH=DH=2,根據(jù)平行線分線段成比例定理得到,求得GM=2MC;
②過C作CN⊥AD交AD的延長線于N,則CN∥AG,根據(jù)相似三角形的性質(zhì)得到,由①知GM=2MC,得到2NC=AG,根據(jù)相似三角形的性質(zhì)得到結(jié)論.
(1)
在和中,
,
;
.
(2)①如圖,過作交于,
,
,
,
設(shè),,
,
,
,
;
②如圖,過作,
,
,
由①知,
,
,
,
,
,
,
,
,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣2x+6與x軸,y軸分別交A,B兩點,點A關(guān)于原點O的對稱點是點C,動點E從A出發(fā)以每秒1個單位的速度運動到點C,點D在線段OB上滿足tan∠DEO=2,過E點作EF⊥AB于點F,點A關(guān)于點F的對稱點為點G,以DG為直徑作⊙M,設(shè)點E運動的時間為t秒;
(1)當(dāng)點E在線段OA上運動,t= 時,△AEF與△EDO的相似比為1:;
(2)當(dāng)⊙M與y軸相切時,求t的值;
(3)若直線EG與⊙M交于點N,是否存在t使NG=,若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.
求一次函數(shù)的表達(dá)式;
若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,點E,F分別是邊BC上兩點,且.將繞點O逆時針旋轉(zhuǎn),當(dāng)點F與點C重合時,停止旋轉(zhuǎn).已知,BC=6,設(shè)BE=x,EF=y.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補充完整:
(1)按照下表中自變量x的值進(jìn)行取點、畫圖、測量,得到了y與x的幾組對應(yīng)值;
x | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
y | 3 | 2.77 | 2.50 | 2.55 | 2.65 |
(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)EF=2BE時,BE的長度約為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠AOC=30°,半徑為2cm的P的圓心在射線OA上,且與點O的距離為6cm,如果P以1cm/s的速度沿直線AB由A向B的方向移動,那么P與直線CD相切時☉P運動的時間是( )
A.3秒或10秒B.3秒或8秒C.2秒或8秒D.2秒或10秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請按下列要求畫圖:
(1)將△ABC先向右平移4個單位長度、再向下平移1個單位長度,得到△A1B1C1,畫出△A1B1C1;
(2)畫出與△ABC關(guān)于原點O成中心對稱的△A2B2C2,并直接寫出點A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】口袋中有只乒乓球,其中只是紅球,另只是黃球,它們的大小都一樣,現(xiàn)從中任意摸出只球,
(1)恰為一紅一黃的概率是多少?
(2)兩只均為紅球的概率是多少?
(3)兩只均為黃球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】密蘇里州圣路易斯拱門是座雄偉壯觀的拋物線形的建筑物,是美國最高的獨自挺立的紀(jì)念碑,如圖.拱門的地面寬度為200米,兩側(cè)距地面高150米處各有一個觀光窗,兩窗的水平距離為100米,求拱門的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等邊△ABC中D點為AB邊上一動點,E為直線AC上一點,將△ADE沿著DE折疊,點A落在直線BC上,對應(yīng)點為F,若AB=4,BF:FC=1:3,則線段AE的長度為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com