【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎(chǔ)上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個長方體,至少還需要個小立方塊.最終搭成的長方體的表面積是

【答案】26;66
【解析】解:由俯視圖易得最底層有7個小立方體,第二層有2個小立方體,第三層有1個小立方體,

其小正方塊分布情況如下:

那么共有7+2+1=10個幾何體組成.

若搭成一個大長方體,共需3×4×3=36個小立方體,

所以還需36﹣10=26個小立方體,

最終搭成的長方體的表面積是3×4×2+3×3×2+3×4×2=66

所以答案是:26,66.

【考點精析】本題主要考查了由三視圖判斷幾何體的相關(guān)知識點,需要掌握在三視圖中,通過主視圖、俯視圖可以確定組合圖形的列數(shù);通過俯視圖、左視圖可以確定組合圖形的行數(shù);通過主視圖、左視圖可以確定行與列中的最高層數(shù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,對角線、相交于,,、分別是、的中點,下列結(jié)論:①;②;③;④平分;⑤四邊形是菱形,其中正確的個數(shù)是(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】假山具有多方面的造景功能,與建筑、植物等組合成富于變化的景致.某公園有一座假山,小亮、小慧等同學(xué)想用一些測量工具和所學(xué)的幾何知識測量這座假山的高度來檢驗自己掌握知識和運用知識的能力,如圖,在陽光下,小亮站在水平地面的D處,此時小亮身高的影子頂端與假山的影子頂端E重合,這時小亮身高CD的影長DE=2米,一段時間后,小亮從D點沿BD的方向走了3.6米到達G處,此時小亮身高的影子頂端與假山的影子頂端H重合,這時小亮身高的影長GH=2.4米,已知小亮的身高CD=FG=1.5米,點G,E,D均在直線BH上,AB⊥BH,CD⊥BH,GF⊥BH,請你根據(jù)題中提供的相關(guān)信息,求出假山的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中楊輝三角就是一例.如圖,這個三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(yīng)展開式中的系數(shù);第四行的四個數(shù)1,3,31,恰好對應(yīng)著展開式中的系數(shù)等等.

1)根據(jù)上面的規(guī)律,寫出的展開式.

2)利用上面的規(guī)律計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩條直線,相交.

1)如果,求,的度數(shù);

2)如果,求,的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明想測山高和索道的長度.他在B處仰望山頂A,測得仰角∠B=31°,再往山的方向(水平方向)前進80m至索道口C處,沿索道方向仰望山頂,測得仰角∠ACE=39°.

(1)求這座山的高度(小明的身高忽略不計);
(2)求索道AC的長(結(jié)果精確到0.1m).
(參考數(shù)據(jù):tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空并在后面的括號中填理由

如圖,,試問、有什么關(guān)系.

解:.理由如下:

過點

_____________________________________________

又∵____________________________________

_____________________________________________

_____________________________________________

____________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖像增大而減小,且經(jīng)過點

求(1的值;

2)求該直線與坐標(biāo)軸圍成的三角形的面積及坐標(biāo)原點到直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC,BD交于點O,折疊正方形ABCD,使AB邊落在AC上,點B落在點H處,折痕AE分別交BC于點E,交BO于點F,連結(jié)FH,則下列結(jié)論正確的有幾個( )
⑴AD=DF;(2) = ;(3) = ﹣1;(4)四邊形BEHF為菱形.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案