【題目】如圖,菱形ABCD的邊長為2,點E,F分別是邊AD,CD上的兩個動點,且滿足AE+CF=BD=2,設(shè)△BEF的面積為S,則S的取值范圍是______.
【答案】≤S≤.
【解析】
先證明△BDE≌△BCF,再求出△BEF為正三角形即可解答.
解:∵菱形ABCD的邊長為2,BD=2,
∴△ABD和△BCD都為正三角形,
∴∠BDE=∠BCF=60°,BD=BC,
∵AE+DE=AD=2,而AE+CF=2,
∴DE=CF,
∴△BDE≌△BCF(SAS);
∴∠DBE=∠CBF,BE=BF,
∵∠DBC=∠DBF+∠CBF=60°,
∴∠DBF+∠DBE=60°即∠EBF=60°,
∴△BEF為正三角形;
設(shè)BE=BF=EF=x,
則S=xxsin60°=x2,
當(dāng)BE⊥AD時,x最小=2×sin60°=,
∴S最小=×()2=,
當(dāng)BE與AB重合時,x最大=2,
∴S最大=×22=,
∴≤S≤.
故答案為:≤S≤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當(dāng)△BDC的面積最大時,求點P的坐標(biāo);
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明每天早上要在7:50之前趕到距家900米的學(xué)校上學(xué).小明以60米/分的速度出發(fā)10分后,小明的爸爸發(fā)現(xiàn)他忘了帶語文書.于是,爸爸立即以160米/分的速度去追小明,爸爸能否在小明進學(xué)校前追上他?若能,請說明理由,若不能,請計算,爸爸的速度至少為多少時才能趕在小明進學(xué)校前追上他?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間共有75名工人生產(chǎn)A、B兩種工件,已知一名工人每天可生產(chǎn)A種工件15件或B種工件20件,但要安裝一臺機械時,同時需A種工件1件,B種工件2件,才能配套,設(shè)車間如何分配工人生產(chǎn),才能保證連續(xù)安裝機械時,兩種工件恰好配套?
設(shè)該車間分配名工人生產(chǎn)A種工件,名工人生產(chǎn)B種工件才能保證連續(xù)安裝機械時兩種工件恰好配套. 的值為( )
A.30B.40C.45D.55
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
壹娛觀察分析-中國內(nèi)地四年春節(jié)檔及節(jié)后的三個自然周(下文簡稱“節(jié)后三周”)的票房表現(xiàn).
從柱狀圖變化趨勢中,可以看出年-年春節(jié)檔和節(jié)后三周票房,都有著連續(xù)的高速增長.在年,春節(jié)檔、節(jié)后三周票房分別是億元和億元,同年增長率分別達到和.
這一迅猛的勢頭在年被打斷,春節(jié)檔和節(jié)后票房增長率分別跌至、.如果去除自年開始計入票價的左右的服務(wù)費,增幅還將進一步縮窄.
相比于年春節(jié)檔的同比增速, 節(jié)后三周的同比增速要稍好看一些,而且是最近三年來第一次節(jié)后三周同比增幅高于春節(jié)檔同比增幅.
在萬達年業(yè)績快報中,曾提到“由于新建影院大多數(shù)位于三四線城市,以及受新開影院上座率低的拖累,公司的場均人次有所下滑,同比下降”從這一闡述中,我們可以窺見三四線城市電影市場,在增長上的短板.
根據(jù)以上材料解答下列問題:
()年中國內(nèi)地春節(jié)周票房收入為__________億元,節(jié)后三周票房收入__________億元.
()若
元.
()請用統(tǒng)計表將-年中國內(nèi)地春節(jié)周票房和節(jié)后三周票房成績表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當(dāng)有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條 “折線數(shù)軸” .圖中點A表示-11,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距29個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴?fù)原速.設(shè)運動的時間為t秒.
問:(1)動點P從點A運動至C點需要多少時間?
(2)P、Q兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時,P、B兩點在數(shù)軸上相距的長度與Q、O兩點在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(且)與軸交于點,過點作直線軸,且與交于點.
(1)當(dāng),時,求的長;
(2)若,,且軸,判斷四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場統(tǒng)計了每個營業(yè)員在某月的銷售額,繪制了如下的條形統(tǒng)計圖以及不完整的扇形統(tǒng)計圖:
解答下列問題:
(1)設(shè)營業(yè)員的月銷售額為x(單位:萬元),商場規(guī)定:當(dāng)x<15時為不稱職,當(dāng)15≤x<20時,為基本稱職,當(dāng)20≤x<25為稱職,當(dāng)x≥25時為優(yōu)秀.則扇形統(tǒng)計圖中的a=________,b=________.
(2)所有營業(yè)員月銷售額的中位數(shù)和眾數(shù)分別是多少?
(3)為了調(diào)動營業(yè)員的積極性,決定制定一個月銷售額獎勵標(biāo)準(zhǔn),凡到達或超過這個標(biāo)準(zhǔn)的營業(yè)員將受到獎勵.如果要使得營業(yè)員的半數(shù)左右能獲獎,獎勵標(biāo)準(zhǔn)應(yīng)定為多少萬元?并簡述其理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com