已知P點的坐標(biāo)為(0,0),如果P點向下平移2個單位后又向右平移3個單位,得到的坐標(biāo)為


  1. A.
    (一2,3)
  2. B.
    (一2,-3)
  3. C.
    (3,-2)
  4. D.
    (3,2)
C
分析:讓原來點P的坐標(biāo)橫坐標(biāo)加3,縱坐標(biāo)減2即可得到新點的坐標(biāo).
解答:P點向下平移2個單位后又向右平移3個單位,平移后的點的橫坐標(biāo)為0+3=3;縱坐標(biāo)為0-2=-2;
∴得到點的坐標(biāo)為(3,-2),
故選C.
點評:本題考查圖形的平移變換,關(guān)鍵是要牢記左右平移只改變點的橫坐標(biāo),左減右加;上下平移只改變點的縱坐標(biāo),上加下減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)反比例函數(shù)y=
kx
(k>0)的圖象與經(jīng)過原點的直線l相交于A、B兩點,已知A點的坐標(biāo)為(2,1),那么B點的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:拋物線y=ax2+bx+c經(jīng)過原點(0,0)和A(1,-3),B(-1,5)兩點.
(1)求拋物線的解析式;
(2)設(shè)拋物線與x軸的另一個交點為C,以O(shè)C為直徑作⊙M,如果過拋物線上一點P作⊙M的切線PD,切點為D,且與y軸的正半軸交點為E,連接MD,已知E點的坐標(biāo)為(0,m),求四邊形EOMD的面積(用含m的代數(shù)式表示);
(3)延長DM交⊙M于點N,連接ON,OD,當(dāng)點P在(2)的條件下運動到什么位置時,能使得四邊形EOMD和△DON的面積相等,請求出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、圓心在x軸上的兩圓相交于A、B兩點,已知A點的坐標(biāo)為(-3,2),則B點的坐標(biāo)是
(-3,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湘西州)如圖,已知拋物線y=-
14
x2+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標(biāo)為A(-2,0).
(1)求拋物線的解析式及它的對稱軸方程;
(2)求點C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)試判斷△AOC與△COB是否相似?并說明理由;
(4)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△OAB各頂點的坐標(biāo)分別為O(0,0),A(2,4),B(4,0),若得到與△OAB形狀相同的大△OA′B′,已知A′點的坐標(biāo)為(6,12),那么B′點的坐標(biāo)為( 。

查看答案和解析>>

同步練習(xí)冊答案