【題目】列分式方程解應(yīng)用題:今年植樹節(jié),某校師生到距學(xué)校20千米的公路旁植樹,一班師生騎自行車先走,走了16千米后,二班師生乘汽車出發(fā),結(jié)果同時(shí)到達(dá).已知汽車的速度比自行車的速度每小時(shí)快60千米,求兩種車的速度各是多少?

【答案】汽車和自行車的速度分別是75千米/時(shí)、15千米/時(shí).

【解析】試題分析:設(shè)自行車的速度為x千米/時(shí),則汽車的速度為(x+60)千米/時(shí),根據(jù)等量關(guān)系 :一班師生騎自行車走4千米所用時(shí)間=二班師生乘汽車20千米所用時(shí)間,列出方程即可得解.

試題解析:設(shè)自行車的速度為x千米/時(shí),則汽車的速度為(x+60)千米/時(shí),

根據(jù)題意得:

解得:x=15(千米/時(shí)),

經(jīng)檢驗(yàn),x=15是原方程的解且符合題意.,

則汽車的速度為:(千米/時(shí)),

答:汽車和自行車的速度分別是75千米/時(shí)、15千米/時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列解題過程填空:

如圖,的平分線,的平分線,,,求的度數(shù).

解:∵平分,平分,,

,

平分,

,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個(gè)結(jié)論:①存在實(shí)數(shù)a,使得方程恰有2個(gè)不同的實(shí)根; ②存在實(shí)數(shù)a,使得方程恰有3個(gè)不同的實(shí)根;③存在實(shí)數(shù)a,使得方程恰有4個(gè)不同的實(shí)根;④存在實(shí)數(shù)a,使得方程恰有6個(gè)不同的實(shí)根;其中正確的結(jié)論個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小劉對(duì)本班同學(xué)的業(yè)余興趣愛好進(jìn)行了一次調(diào)查,她根據(jù)采集到的數(shù)據(jù),繪制了下面的圖1和圖2.

請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:

(1)在圖1中,將書畫部分的圖形補(bǔ)充完整;

(2)在圖2中,求出球類部分所對(duì)應(yīng)的圓心角的度數(shù),并分別寫出愛好音樂”、“書畫”、“其它的人數(shù)占本班學(xué)生數(shù)的百分?jǐn)?shù);

(3)觀察圖1和圖2,你能得出哪些結(jié)論(只要寫出一條結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長(zhǎng)方形地面,觀察下列圖形,探究并解答問題:

(1)在第4個(gè)圖中,共有白色瓷磚______塊;在第個(gè)圖中,共有白色瓷磚_____塊;

(2)試用含的代數(shù)式表示在第個(gè)圖中共有瓷磚的塊數(shù);

(3)如果每塊黑瓷磚35元,每塊白瓷磚50元,當(dāng)時(shí),求鋪設(shè)長(zhǎng)方形地面共需花多少錢購(gòu)買瓷磚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵(lì)居民節(jié)約用水,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的水費(fèi),月用水量不超過20立方米時(shí),按2元/立方米計(jì)費(fèi);月用水量超過20立方米時(shí),其中的20立方米仍按2元/立方米收費(fèi),超過部分按2.6元/立方米計(jì)費(fèi).設(shè)每戶家庭用水量為x立方米時(shí),應(yīng)交水費(fèi)y元.

1)當(dāng)時(shí),y= (用含x的代數(shù)式表示);

當(dāng)時(shí),y= (用含x的代數(shù)式表示);

2)小明家第二季度交納水費(fèi)的情況如下:

月份

四月份

五月份

六月份

交費(fèi)金額

30

34

47.8

小明家這個(gè)季度共用水多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形是正方形,點(diǎn)是邊的中點(diǎn), ,且交正方形的外角平分線于點(diǎn)請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖形的探究片段,完成所提出的問題.

1)探究1:小強(qiáng)看到圖①后,很快發(fā)現(xiàn)這需要證明AEEF所在的兩個(gè)三角形全等,但ABEECF顯然不全等(個(gè)直角三角形,一個(gè)鈍角三角形)考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M(如圖②),連接EM后嘗試著去證明就行了.隨即小強(qiáng)寫出了如下的證明過程:

證明:如圖②,取AB的中點(diǎn)M,連接EM.

又∵

∵點(diǎn)E、M分別為正方形的邊BCAB的中點(diǎn),

是等腰直角三角形,

又∵是正方形外角的平分線,

,∴

,

2)探究2:小強(qiáng)繼續(xù)探索,如圖③,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上的任意一點(diǎn),其余條件不變,發(fā)現(xiàn)AE=EF仍然成立小強(qiáng)進(jìn)一步還想試試,如圖④,若把條件點(diǎn)E是邊BC的中點(diǎn)點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn),其余條件仍不變,那么結(jié)論AE=EF仍然成立請(qǐng)你選擇圖③或圖④中的一種情況寫出證明過程給小強(qiáng)看.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蟲從點(diǎn)A出發(fā)在一條直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),爬行的路程依次為:(單位:cm)①+5,②-3,③+10,④-8,⑤-6,⑥+11,⑦-9

1)小蟲最后是否回到出發(fā)點(diǎn)A,說明理由;

2)小蟲在第幾次爬行后離點(diǎn)A最遠(yuǎn),此時(shí)距離點(diǎn)A多少厘米?

3)在爬行過程中,如果每爬行1厘米獎(jiǎng)勵(lì)一粒芝麻,那么小蟲一共得到多少粒芝麻?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案