【題目】如圖,將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,點(diǎn)P是優(yōu)弧 上一點(diǎn),則∠APB的度數(shù)為( )
A.45°
B.30°
C.75°
D.60°
【答案】D
【解析】解:作半徑OC⊥AB于D,連結(jié)OA、OB,如圖, ∵將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,
∴OD=CD,
∴OD= OC= OA,
∴∠OAD=30°,
又OA=OB,
∴∠OBA=30°,
∴∠AOB=120°,
∴∠APB= ∠AOB=60°.
故選D.
作半徑OC⊥AB于D,連結(jié)OA、OB,如圖,根據(jù)折疊的性質(zhì)得OD=CD,則OD= OA,根據(jù)含30度的直角三角形三邊的關(guān)系得到∠OAD=30°,接著根據(jù)三角形內(nèi)角和定理可計(jì)算出∠AOB=120°,
然后根據(jù)圓周角定理計(jì)算∠APB的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在等邊△ABC的邊BC上.
(1)把△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)C與點(diǎn)B重合,畫出旋轉(zhuǎn)后的△ABD′;
(2)如果AC=4,CD=1,求(1)中點(diǎn)D旋轉(zhuǎn)所走過的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張等邊三角形紙片沿中位線剪成4個(gè)小三角形,稱為第一次操作;然后,將其中的一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到7個(gè)小三角形,稱為第二次操作;再將其中一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到10個(gè)小三角形,稱為第三次操作;…根據(jù)以上操作,若要得到100個(gè)小三角形,則需要操作的次數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關(guān)系,為什么?
(2)BE與DF有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長之和為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,這是一個(gè)五角星ABCDE,你能計(jì)算出∠A+∠B+∠C+∠D+∠E的度數(shù)嗎?為什么?(必須寫推理過程)
(2)如圖2,如果點(diǎn)B向右移動到AC上,那么還能求出∠A+∠DBE+∠C+∠D+∠E的大小嗎?若能結(jié)果是多少?(可不寫推理過程)
(3)如圖,當(dāng)點(diǎn)B向右移動到AC的另一側(cè)時(shí),上面的結(jié)論還成立嗎?
(4)如圖4,當(dāng)點(diǎn)B、E移動到∠CAD的內(nèi)部時(shí),結(jié)論又如何?根據(jù)圖3或圖4,說明你計(jì)算的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.
(1)求證:△ABC∽△CBD;
(2)如果AC=4,BC=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是角平分錢,點(diǎn)E在AC上,且∠EAD=∠ADE.
(1)求證:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com