如圖所示,過點(diǎn)F(0,1)的直線y=kx+b與拋物線交于M(x1,y1
和N(x2,y2)兩點(diǎn)(其中x1<0,x2<0).
⑴求b的值.
⑵求x1•x2的值
⑶分別過M、N作直線l:y=-1的垂線,垂足分別是M1、N1,判斷△M1FN1的形狀,并證明你的結(jié)論.
⑷對(duì)于過點(diǎn)F的任意直線MN,是否存在一條定直線m,使m與以MN為直徑的圓相切.如果有,請(qǐng)法度出這條直線m的解析式;如果沒有,請(qǐng)說明理由.
(1)將F(0,1)代入y=kx+b即可得b值。b=1
⑵顯然是方程組的兩組解,解方程組消元得,依據(jù)“根與系數(shù)關(guān)系”得=-4

⑶△M1FN1是直角三角形是直角三角形,理由如下:
由題知M1的橫坐標(biāo)為x1,N1的橫坐標(biāo)為x2,設(shè)M1N1交y軸于F1
則F1M1•F1N1=-x1•x2=4,而F F1=2,所以F1M1•F1N1=F1F2,
另有∠M1F1F=∠FF1N1=90°,易證Rt△M1FF1∽R(shí)t△N1FF1,得∠M1FF1=∠FN1F1
故∠M1FN1=∠M1FF1+∠F1FN1=∠FN1F1+∠F1FN1=90°,所以△M1FN1是直角三角形.
⑷存在,該直線為y=-1.理由如下:
直線y=-1即為直線M1N1
如圖,設(shè)N點(diǎn)橫坐標(biāo)為m,則N點(diǎn)縱坐標(biāo)為,計(jì)算知NN1=,
NF=,得NN1=NF
同理MM1=MF.
那么MN=MM1+NN1,作梯形MM1N1N的中位線PQ,由中位線性質(zhì)知PQ=(MM1
+NN1)=MN,即圓心到直線y=-1的距離等于圓的半徑,所以y=-1總與該圓相切.解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖所示,過點(diǎn)P畫直線a的平行線b的作法的依據(jù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,過點(diǎn)A(a,0)(a>0)且平行于y軸的直線分別與拋物線y=x2及y=
14
x2交于C、B精英家教網(wǎng)兩點(diǎn).
(1)求點(diǎn)C、B的坐標(biāo);
(2)求線段AB與BC的比;
(3)若正方形BCDE的一邊DE與y軸重合,求此正方形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,過點(diǎn)F(0,1)的直線y=kx+b與拋物線y=
14
x2交于M(x1,y1)和N(x2,y2)兩點(diǎn)(其中x1<0,x2>0).
(1)求b的值.
(2)求x1•x2的值.
(3)分別過M,N作直線l:y=-1的垂線,垂足分別是 M1和N1.判斷△M1FN1的形狀,并證明你的結(jié)論.
(4)對(duì)于過點(diǎn)F的任意直線MN,是否存在一條定直線m(m是常數(shù)),使m與以MN為直徑的圓相切?如果有,請(qǐng)求出這條直線m的解析式;如果沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,過點(diǎn)D分別作DE∥BC,交AC于E,作DF∥AB,交BC于F,若AD:DC=1:2,則△ADE,△DCF,平行四邊形DEBF的面積比是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,過點(diǎn)A(1,0)作垂直x軸的直線l,分別交函數(shù)y1=x(x≥0),y2=
4x
(x>0)圖象于B、C兩點(diǎn),則BC=
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案