【題目】在平面直角坐標(biāo)系xOy中,點A(0,2),B(p,q)在直線上,拋物線m經(jīng)過點B、C(p+4,q),且它的頂點N在直線l上.
(1)若B(-2,1),
①請在平面直角坐標(biāo)系中畫出直線l與拋物線m的示意圖;
②設(shè)拋物線m上的點Q的模坐標(biāo)為e(-2≤e≤0)過點Q作x軸的垂線,與直線l交于點H.若QH=d,當(dāng)d隨e的增大面增大時,求e的取值范圍;
(2)拋物線m與y軸交于點F,當(dāng)拋物線m與x軸有唯一交點時,判斷△NOF的形狀并說明理由.
【答案】(1)①畫圖見解析;②當(dāng)d隨e的増大而増大時,e的取直范圍是-2<e<-1;(2) 為等腰直角三角形.
【解析】
(1)①根據(jù)題意畫出圖形即可,②由①可求得,直線,拋物線
設(shè)過點Q且與軸垂直的直線與交于點H, 設(shè)點的坐標(biāo)為,點H的坐標(biāo)為, 當(dāng)吋,點總在點的正上方,可得, 再根據(jù)的増大而増大確定e的取值范圍.
(2)根據(jù)B(p,q)、C(p+4,q)在拋物線上,得出拋物線的對稱軸內(nèi)x=p+2,再根據(jù)拋物線軸只有一個交點,可設(shè)頂點N(p+2,0)設(shè)出拋物線的解析式,根據(jù)題意
得出,從而得出F點的坐標(biāo),得出三角形NOF的形狀.
(1)①如圖即為所求
②解:由①可求得,直線,拋物線
因為點在拋物線上,過點且與軸垂直的直線與交于點,
所以可設(shè)點的坐標(biāo)為,點的坐標(biāo)為,其中.
當(dāng)吋,點總在點的正上方,可得
因為
所以當(dāng)的増大而増大時,的取值范圍是
(2) 因為B(p,q)、C(p+4,q)在拋物線上,
所以拋物線的對稱軸內(nèi).
又因為拋物線軸只有一個交點,可設(shè)頂點.
設(shè)拋物線的解析式為.
當(dāng)時,.
可得
把代入,,可得.
化簡可得 ①
設(shè)直線的解析式為,
分別把代入,可得②,
及 ③.
由①,②,③可得
所以.
又因為,
所以,且
所以為等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預(yù)測,井建立如下模型:設(shè)第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關(guān)系:Q=
(1)當(dāng)8<t≤24時,求P關(guān)于t的函數(shù)解析式;
(2)設(shè)第t個月銷售該原料藥的月毛利潤為w(單位:萬元)
①求w關(guān)于t的函數(shù)解析式;
②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應(yīng)的月銷售量P的最小值和最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,四條拋物線如圖所示,其解析式中的二次項系數(shù)一定小于1的是( 。
A. y1 B. y2 C. y3 D. y4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AB=25,BC=15.
(1)如圖1,折疊△ABC使點A落在AC邊上的點D處,折痕交AC、AB分別于Q、H,若S△ABC=9S△DHQ,則HQ= .
(2)如圖2,折疊△ABC使點A落在BC邊上的點M處,折痕交AC、AB分別于E、F.若FM∥AC,求證:四邊形AEMF是菱形;
(3)在(1)(2)的條件下,線段CQ上是否存在點P,使得△CMP和△HQP相似?若存在,求出PQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的弦,P為AB的中點,連接OA、OP,將△OPA繞點O旋轉(zhuǎn)到△OQB.設(shè)⊙O的半徑為1,∠AOQ=135°,則AQ的長為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】咸寧市某中學(xué)為了解本校學(xué)生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機抽取了部分學(xué)生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
⑴補全條形統(tǒng)計圖,“體育”對應(yīng)扇形的圓心角是 度;
⑵根據(jù)以上統(tǒng)計分析,估計該校名學(xué)生中喜愛“娛樂”的有 人;
⑶在此次問卷調(diào)查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機抽取人去參加“新聞小記者”培訓(xùn),請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點E在對角線AC上,EC=BC=DC
(1)若∠CBD=39°,求∠BAD的度數(shù)
(2)求證:∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.
(1)判斷∠ADC是否是直角,并說明理由;
(2)試求四邊形草坪ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若AF=6,EF=2,求⊙O的半徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com