【題目】下列說法中.正確的是 ( )
A. 0是最小的有理教 B. 0是最小的整數(shù)
C. 0的倒數(shù)和相反數(shù)都是0 D. 0是最小的非負數(shù)
科目:初中數(shù)學 來源: 題型:
【題目】閱讀探索題:
(1)如圖1,OP是∠MON的平分線,以O為圓心任意長為半徑作弧,交射線ON,OM為C,B兩點,在射線OP上任取一點A(O點除外),連接AB,AC,求證:△AOB≌△AOC.
(2)請你參考這個作全等三角形的方法,解答下列問題:
①如圖2:在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,試判斷BC和AC、AD之間的數(shù)量關系;
②如圖3,在四邊形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某車 間生產(chǎn)一批圓柱形機器零件,從中抽出了 6 件進行檢驗,把標準直徑的長記為 0,比標準直徑長的記為正數(shù),比標準直徑短的記為負數(shù),檢查記錄如下:
1 | 2 | 3 | 4 | 5 | 6 |
+0.2 | ﹣0.3 | ﹣0.2 | +0.3 | +0.4 | ﹣0.1 |
則第_________個零件最符合標準.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀解題過程,回答問題. 如圖,OC在∠AOB內(nèi),∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).
解:過O點作射線OM,使點M,O,A在同一直線上.
因為∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,
所以∠BOC=∠MOD,
所以∠AOD=180°﹣∠BOC=180°﹣30°=150°
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,接著關閉進水管直到容器內(nèi)的水放完.假設每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(單位:升)與時間x(單位:分)之間的部分關系如圖所示.那么,從關閉進水管起________分鐘該容器內(nèi)的水恰好放完.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號,此時B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時又位于B船的北偏東78°方向.
(1)求∠ABC的度數(shù);
(2)A船以每小時30海里的速度前去救援,問多長時間能到出事地點.(結(jié)果精確到0.01小時).
(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知D為△ABC邊BC上的一個動點(不與B,C重合),過D作DE∥AC交AB于點E,作DF∥AB交AC于點F.
(1)證明:△BDE∽△DCF;
(2)若△ABC的面積為10,點G為線段AF上的任意一點,設FC:AC=n,△DEG的面積為S,求S關于n的關系式,并求S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列解題過程:計算:(﹣5)÷( ﹣ )×20 解:原式=(﹣5)÷(﹣ )×20 (第一步)
=(﹣5)÷(﹣4)(第二步)
=﹣20 (第三步)
(1)上述解題過程中有兩處錯誤, 第一處是第步,錯誤的原因是;
第二處是第步,錯誤的原因是;
(2)把正確的解題過程寫出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com