【題目】如圖,四邊形ABCD中,∠A=∠B=90°,P是線段AB上的一個動點.

(1)若AD=2,BC=6,AB=8,且以A,D,P為頂點的三角形與以B,C,P為頂點的三角形相似,求AP的長;

(2)若AD=a,BC=b,AB=m,則當a,b,m滿足什么關系時,一定存在點P使△ADP∽△BPC?并說明理由.

【答案】(1)28;(2)m2﹣4ab≥0;理由見解析;

【解析】

(1)兩種情形構建方程求解即可;

(2)ADP∽△BPC,可得=,,整理得: x2mx+ab=0,根據(jù)題意△≥0,即可解決問題;

(1)設AP=x.

∵以A,D,P為頂點的三角形與以B,C,P為頂點的三角形相似,

①當=時,=,解得x=28.

②當時,,解得x=2,

∴當A,D,P為頂點的三角形與以B,C,P為頂點的三角形相似,AP的值為28;

(2)設PA=x,

∵△ADP∽△BPC,

=,

=,

整理得:x2﹣mx+ab=0,

由題意△≥0,

m2﹣4ab0.

∴當a,b,m滿足m2﹣4ab0時,一定存在點P使△ADP∽△BPC.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,頂角為36°的等腰三角形,其底邊與腰之比等,這樣的三角形稱為黃金三角形,已知腰AB=1,△ABC為第一個黃金三角形,△BCD為第二個黃金三角形,△CDE為第三個黃金三角形,以此類推,第2014個黃金三角形的周長( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,CFACAB的延長線于點F,GBC的中點,射線AGCFDECF上,CEAD,連接BD,BE.求證:BDE是等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtBCD中,∠CBD90°BCBD,點ACB的延長線上,且BABC,點E在直線BD上移動,過點E作射線EFEA,交CD所在直線于點F

1)試求證圖(1)中:∠BAE=∠DEF;

2)當點E在線段BD上移動時,如圖(1)所示,求證:AEEF

3)當點E在直線BD上移動時,在圖(2)與圖(3)中,分別猜想線段AEEF有怎樣的數(shù)量關系,并就圖(3)的猜想結果說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D,E△ABC的邊BC上,AB=AC,AD=AE.

(1)求證:BD=CE;

(2)若AD=BD=DE,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,以斜邊的中點為旋轉(zhuǎn)中心,把這個三角形按逆時針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)后兩個直角三角形重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的頂點M在第二象限,且經(jīng)過點 A(1,0)和點 B(0,2).則

(1)a 的取值范圍是________;

(2)△AMO的面積為△ABO面積的倍時,則a的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC繞點A順時針旋轉(zhuǎn)60°得到ADE,點C的對應點E恰好落在BA的延長線上,DEBC交于點F,連接BD.下列結論不一定正確的是(  )

A. AD=BD B. ACBD C. DF=EF D. CBD=E

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,轉(zhuǎn)盤被劃分成個相同的小扇形,并分別標上數(shù)字,,,,分別轉(zhuǎn)動兩次轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針所指向的數(shù)字作為直角坐標系中點的坐標(第一次作橫坐標,第二次作縱坐標),指針如果指向分界線上,認為指向左側(cè)扇形的數(shù)字,則點落在直線的下方的概率為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案