【題目】一個不透明的袋子中裝有四個小球,上面分別標有數(shù)字﹣2,﹣10,1,它們除了數(shù)字不同外,其它完全相同.

1)隨機從袋子中摸出一個小球,摸出的球上面標的數(shù)字為正數(shù)的概率是   

2)小聰先從袋子中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內點M的橫坐標;然后放回攪勻,接著小明從袋子中隨機摸出一個小球,記下數(shù)字作為點M的縱坐標.如圖,已知四邊形ABCD的四個頂點的坐標分別為A(﹣20),B0,﹣2),C10),D0,1),請用畫樹狀圖或列表法,求點M落在四邊形ABCD所圍成的部分內(含邊界)的概率.

【答案】1;(2

【解析】

1)直接利用概率公式計算可得;

2)列表得出所有等可能結果,從中找到符合條件的結果數(shù),再根據(jù)概率公式計算可得.

解:(1)在﹣2,﹣1,01中正數(shù)有1個,

∴摸出的球上面標的數(shù)字為正數(shù)的概率是,

故答案為:

2)列表如下:

0

1

0

1

由表知,共有16種等可能結果,其中點M落在四邊形ABCD所圍成的部分內(含邊界)的有:

(﹣2,0)、(﹣1,﹣1)、(﹣10)、(0,﹣2)、(0,﹣1)、(0,0)、(0,1)、(1,0)這8個,

所以點M落在四邊形ABCD所圍成的部分內(含邊界)的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某花店準備購進甲、乙兩種花卉,若購進甲種花卉20盆,乙種花卉50盆,需要720元;若購進甲種花卉40盆,乙種花卉30盆,需要880元.

1)求購進甲、乙兩種花卉,每盆各需多少元?

2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準備拿出800元全部用來購進這兩種花卉,考慮到顧客需求,要求購進乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過甲種花卉數(shù)量的8倍,那么該花店共有幾種購進方案?在所有的購進方案中,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寒梅中學為了豐富學生的課余生活,計劃購買圍棋和中國象棋供棋類興趣小組活動使用,若購買3副圍棋和5副中國象棋需用98元;若購買8副圍棋和3副中國象棋需用158元;(1)求每副圍棋和每副中國象棋各多少元;(2)寒梅中學決定購買圍棋和中國象棋共40副,總費用不超過550元,那么寒梅中學最多可以購買多少副圍棋?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABHK是邊長為6的正方形,點C、D在邊AB上,且AC=DB=1,點P是線段CD上的動點,分別以APPB為邊在線段AB的同側作正方形AMNP和正方形BRQP,E、F分別為MNQR的中點,連接EF,設EF的中點為G,則當點P從點C運動到點D時,點G移動的路徑長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)接到一批帽子生產任務,按要求在20天內完成,約定這批帽子的出廠價為每頂8元.為按時完成任務,該企業(yè)招收了新工人,設新工人小華第x天生產的帽子數(shù)量為y頂,yx滿足如下關系式:y

1)小華第幾天生產的帽子數(shù)量為220頂?

2)如圖,設第x天每頂帽子的成本是P元,Px之間的關系可用圖中的函數(shù)圖象來刻畫.若小華第x天創(chuàng)造的利潤為w元,求wx之間的函數(shù)表達式,并求出第幾天的利潤最大?最大值是多少元?

3)設(2)小題中第m天利潤達到最大值,若要使第(m+1)天的利潤比第m天的利潤至少多49元,則第(m+1)天每頂帽子至少應提價幾元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側作弧,交于兩點MN;第二步,連結MN,分別交ABAC于點E、F;第三步,連結DE、DF..若BD=6,AF=4CD=3,則BE的長是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+3分別交x軸、y軸于A,C兩點,拋物線y=ax2+bx+c(a≠0),經過A,C兩點,與x軸交于點B(1,0).

(1)求拋物線的解析式;

(2)點D為直線AC上一點,點E為拋物線上一點,且D,E兩點的橫坐標都為2,點F為x軸上的點,若四邊形ADEF是平行四邊形,請直接寫出點F的坐標;

(3)若點P是線段AC上的一個動點,過點P作x軸的垂線,交拋物線于點Q,連接AQ,CQ,求ACQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,

(1)求證:ABE≌△BCD;

(2)求出AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】疫情后復學,某校為了了解九年級線上教學期間學生知識掌握情況,舉行了線上教學質量調研測試,張老師根據(jù)測試結果,對本班部分學生進行了分析,他將結果分為四類,:優(yōu)秀;:良好;:合格;:不合格,并將結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:


1)張老師一共調查了_________名同學;

2類所占扇形圓心角的度數(shù)是_________;

3)將上面條形統(tǒng)計圖補充完整;

4)為了共同進步,張老師想從被調查的類和類學生中各隨機選取一位同學進行一幫一互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好都是女同學的概率.

查看答案和解析>>

同步練習冊答案