【題目】設(shè)C為線段AB的中點,四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長為半徑的⊙B與AB相交于F點,延長EB交⊙B于G點,連接DG交于AB于Q點,連接AD.
求證:(1)AD是⊙B的切線;(2)AD=AQ;(3)BC2=CFEG.
【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析.
【解析】試題分析:(1)連接BD,由DC⊥AB,C為AB的中點,由線段垂直平分線的性質(zhì),可得AD=BD,再根據(jù)正方形的性質(zhì),可得∠ADB=90°;
(2)由BD=BG與CD∥BE,利用等邊對等角與平行線的性質(zhì),即可求得∠G=∠CDG=∠BDG=∠BCD=22.5°,繼而求得∠ADQ=∠AQD=67.5°,由等角對等邊,可證得AD=AQ;
(3)易求得∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,即可證得Rt△DCF∽Rt△GED,根據(jù)相似三角形的對應(yīng)邊成比例,即可證得結(jié)論.
試題解析:
(1)連接BD,
∵四邊形BCDE是正方形,
∴∠DBA=45°,∠DCB=90°,即DC⊥AB,
∵C為AB的中點,
∴CD是線段AB的垂直平分線,
∴AD=BD,
∴∠DAB=∠DBA=45°,
∴∠ADB=90°,
即BD⊥AD,
∵BD為半徑,
∴AD是⊙B的切線;
(2)∵BD=BG,
∴∠BDG=∠G,
∵CD∥BE,
∴∠CDG=∠G,
∴∠G=∠CDG=∠BDG=∠BCD=22.5°,
∴∠ADQ=90°﹣∠BDG=67.5°,∠AQB=∠BQG=90°﹣∠G=67.5°,
∴∠ADQ=∠AQD,
∴AD=AQ;
(3)連接DF,
在△BDF中,BD=BF,
∴∠BFD=∠BDF,
又∵∠DBF=45°,
∴∠BFD=∠BDF=67.5°,
∵∠GDB=22.5°,
在Rt△DEF與Rt△GCD中,
∵∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,
∴Rt△DCF∽Rt△GED,
∴,
又∵CD=DE=BC,
∴BC2=CFEG.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,用三種大小不同的六個正方形和一個缺角的長方形拼成大長方形ABCD,其中GH=1,GK=1,設(shè)BF=a.
(1)用含a的代數(shù)式表示CM=_____cm,DM=_______cm.
(2)用含a的代數(shù)式表示大長方形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學生?
(2)求測試結(jié)果為C等級的學生數(shù),并補全條形圖;
(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知DE∥BC,AO,DF交于點C.∠EAB=∠BCF.
(1)求證:AB∥DF;
(2)求證:OB2=OEOF;
(3)連接OD,若∠OBC=∠ODC,求證:四邊形ABCD為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上的 A 、 B 兩點所表示的數(shù)分別為 a 、b,a b 0 ,ab 0
(1)原點O 的位置在 ;
A.點 A 的右邊 B. 點 B 的左邊
C.點 A 與點 B 之間,且靠近點 A D. 點 A 與點 B 之間,且靠近點 B
(2)若 a b 2 ,
①利用數(shù)軸比較大。 a 1, b 1 ;(填“>”、“<”或“=”)
②化簡:|a-1|+|b+1|.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程ax2﹣2(a﹣1)x+a﹣2=0(a>0).
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩個實數(shù)根分別為x1,x2(其中x1>x2).若y是關(guān)于a的函數(shù),且y=ax2x1,求這個函數(shù)的表達式;
(3)將(2)中所得的函數(shù)的圖象在直線a=2的左側(cè)部分沿直線a=2翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結(jié)合這個新的圖象直接寫出:當關(guān)于a的函數(shù)y=2a+b的圖象與此圖象有兩個公共點時,b的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當AB=BC時,它是菱形 B. 當AC⊥BD時,它是菱形
C. 當∠ABC=90°時,它是矩形 D. 當AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校利用二維碼進行學生學號統(tǒng)一編排.黑色小正方形表示1,白色小正方形表示0,將每一行數(shù)字從左到右依次記為a,b,c,d,那么利用公式a×23-b×22-c×21+d計算出每一行的數(shù)據(jù).第一行表示年級,第二行表示班級,如圖1所示,第一行數(shù)字從左往右依次是1,0,0,1,則表示的數(shù)據(jù)為1×23+0×22+0×21+1=9,計作09,第二行數(shù)字從左往右依次是1,0,1,0,則表示的數(shù)據(jù)為1×23+0×22+1×21=10,計作10,以此類推,圖1代表的統(tǒng)一學號為091034,表示9年級10班34號.小明所對應(yīng)的二維碼如圖2所示,則他的編號是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子里裝有3個黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來數(shù)的前提下,小明為估計其中白球數(shù),采用如下辦法:隨機從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機摸出一球,記下顏色,…不斷重復(fù)上述過程.小明共摸100次,其中20次摸到黑球.根據(jù)上述數(shù)據(jù),小明估計口袋中白球大約有( )
A. 10個 B. 12 個 C. 15 個 D. 18個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com