【題目】如圖,AB∥CD , ∠BED=110°,BF平分∠ABE,DF平分∠CDE,則∠BFD= ( )
A.110°B.115°C.125°D.130°
【答案】C
【解析】
先過(guò)點(diǎn)E作EM∥AB,過(guò)點(diǎn)F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根據(jù)角平分線的性質(zhì),即可求得∠ABF+∠CDF的度數(shù),又由兩直線平行,內(nèi)錯(cuò)角相等,即可求得∠BFD的度數(shù).
解:如圖,過(guò)點(diǎn)E作EM∥AB,過(guò)點(diǎn)F作FN∥AB,
∵AB∥CD,
∴EM∥AB∥CD∥FN,
∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,
∴∠ABE+∠BED+∠CDE=360°,
∵∠BED=110°,
∴∠ABE+∠CDE=250°
∵BF平分∠ABE,DF平分∠CDE,
∴∠ABF=∠ABE,∠CDF=∠CDE,
∴∠ABF+∠CDF=(∠ABE+∠CDE)=125°,
∵∠DFN=∠CDF,∠BFN=∠ABF,
∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)..,完成系列問題:
(1)將點(diǎn)向右移動(dòng)六個(gè)單位長(zhǎng)度到點(diǎn),在數(shù)軸上表示出點(diǎn).
(2)在數(shù)軸上找到點(diǎn),使點(diǎn)到.兩點(diǎn)的距離相等.并在數(shù)軸上標(biāo)出點(diǎn)表示的數(shù).
(3)在數(shù)軸上有一點(diǎn),滿足點(diǎn)到點(diǎn)與點(diǎn)到點(diǎn)的距離和是,則點(diǎn)表示的數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元.國(guó)慶節(jié)期間商場(chǎng)決定開展促銷活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案:
方案一:買一套西裝送一條領(lǐng)帶;
方案二:西裝和領(lǐng)帶都按定價(jià)的90%付款.
現(xiàn)某客戶要到該商場(chǎng)購(gòu)買西裝20套,領(lǐng)帶x().
(1)若該客戶按方案一購(gòu)買,需付款多少元(用含x的式子表示)?若該客戶按方案二購(gòu)買,需付款多少元(用含x的式子表示)?
(2)若,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買較為合算;
(3)當(dāng)時(shí),你能給出一種更為省錢的購(gòu)買方法嗎?試寫出你的購(gòu)買方法和所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 為更新果樹品種,某果園計(jì)劃新購(gòu)進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購(gòu)進(jìn)這兩種果樹苗共45棵,其中A種苗的單價(jià)為7元/棵,購(gòu)買B種苗所需費(fèi)用y(元)與購(gòu)買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購(gòu)買計(jì)劃中,B種苗的數(shù)量不超過(guò)35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購(gòu)買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2014年投入教育經(jīng)費(fèi)2900萬(wàn)元,2016年投入教育經(jīng)費(fèi)3509萬(wàn)元.
(1)求2014年至2016年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;
(2)按照義務(wù)教育法規(guī)定,教育經(jīng)費(fèi)的投入不低于國(guó)民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國(guó)民生產(chǎn)總值的增長(zhǎng)情況,該地區(qū)到2018年需投入教育經(jīng)費(fèi)4250萬(wàn)元,如果按(1)中教育經(jīng)費(fèi)投入的增長(zhǎng)率,到2018年該地區(qū)投入的教育經(jīng)費(fèi)是否能達(dá)到4250萬(wàn)元?請(qǐng)說(shuō)明理由.
(參考數(shù)據(jù): =1.1, =1.2, =1.3, =1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進(jìn)路線,在BC的中點(diǎn)M處放置了一臺(tái)定位儀器,設(shè)尋寶者行進(jìn)的時(shí)間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示y與x的函數(shù)關(guān)系的圖像大致如圖②所示,則尋寶者的行進(jìn)路線可能為:
A. A→O→B B. B→A→C C. B→O→C D. C→B→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F.
(1)求證:四邊形BEDF是平行四邊形;(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空并完成以下證明: 已知,如圖,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求證:CD⊥AB.
證明:∵∠1=∠ACB(已知)
∴DE∥BC( 。
∴∠2= ( 。
∵∠2=∠3(已知)
∴∠3= (等量代換)
∴CD∥FH( )
∴∠BDC=∠BHF( 。
又∵FH⊥AB(已知)
∴
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.
(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com