【題目】拋物線y=ax2+bx+c(a≠0,a、b、c為常數(shù))上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表:
x | …… | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | …… |
y | …… | 4 | 4 | m | 0 | …… |
則下列結(jié)論中:①拋物線的對稱軸為直線x=﹣1;②m=;③當﹣4<x<2時,y<0;④方程ax2+bx+c﹣4=0的兩根分別是x1=﹣2,x2=0,其中正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個
【答案】C
【解析】
①根據(jù)表格中x與y的對應(yīng)值和函數(shù)的對稱性,可得出函數(shù)的對稱軸;
②函數(shù)的對稱軸為:x=-1,則m和對應(yīng),即可求解;
③當x=2時y=0,根據(jù)函數(shù)的對稱性,x=-4,y=0,而當-4<x<2時,y>0,即可求解;
④方程ax2+bx+c-4=0的兩根,就是y=ax2+bx+c和y=4的兩圖像的交點的橫坐標,即可求解.
解:①根據(jù)表格可得,函數(shù)的對稱軸為:x=-1,此時y=,故①符合題意;
②函數(shù)的對稱軸為:x=-1,則m和對應(yīng),故②符合題意;
③∵x=2,y=0,∴根據(jù)函數(shù)的對稱性,x=-4,y=0,∴當-4<x<2時,y>0,故③不符合題意;
④∵ax2+bx+c-4=0,∴ax2+bx+c=4∴方程ax2+bx+c-4=0的兩根,就是y=ax2+bx+c和y=4的兩圖像的交點的橫坐標∴x1=﹣2,x2=0,故④符合題意,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥弦BC于點H,點D在優(yōu)弧BC上
(1)若∠AOB=50°,求∠ADC的度數(shù);
(2)若BC=8,AH=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于的方程.
(1)求證:無論取何值,這個方程總有實數(shù)根.
(2)若方程的兩根都是正數(shù),求的取值范圍.
(3)以方程的兩根為兩邊,斜邊為,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市射擊隊打算從君君、標標兩名運動員中選拔一人參加省射擊比賽,射擊隊對兩人的射擊技能進行了測評.在相同的條件下,兩人各打靶5次,成績統(tǒng)計如下:
(1)填寫下表:
平均數(shù)(環(huán)) | 中位數(shù)(環(huán)) | 方差(環(huán)2) | |
君君 |
| 8 | 0.4 |
標標 | 8 |
|
|
(2)根據(jù)以上信息,若選派一名隊員參賽,你認為應(yīng)選哪名隊員,并說明理由.
(3)如果標標再射擊1次,命中8環(huán),那么他射擊成績的方差會 .(填“變大”“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校數(shù)學興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5m,EF=0.25m,目測點D到地面的距離DG=1.5m,到旗桿的水平距離DC=20m,則旗桿的高度為( )
A. mB. m
C.11.5mD.10m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個實數(shù)根為x1,x2(x1<x2),分別以x1,x2為橫坐標和縱坐標得到點M(x1,x2),則稱點M為該一元二次方程的衍生點.
(1)若方程為x2-2x=0,寫出該方程的衍生點M的坐標.
(2)若關(guān)于x的一元二次方程x2-(2m+1)x+2m=0(m<0)的衍生點為M,過點M向x軸和y軸作垂線,兩條垂線與坐標軸恰好圍成一個正方形,求m的值.
(3)是否存在b,c,使得不論k(k≠0)為何值,關(guān)于x的方程x2+bx+c=0的衍生點M始終在直線y=kx-2(k-2)的圖象上,若有請直接寫出b,c的值,若沒有說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=400,BC=600,∠ABC=45°,在△ABC內(nèi)作一個內(nèi)接矩形DEGF(點E、F在邊BC上,點D、G分別在邊AB和AC上),則矩形DEFG的對角線EG最短為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com