【題目】已知:在平行四邊形ABCD中,點(diǎn)E在直線AD上,AE=AD,連接CE交BD于點(diǎn)F,則EF:FC的值是 .
【答案】或.
【解析】
試題分析:∵AE=AD,∴分兩種情況:
①當(dāng)點(diǎn)E在線段AD上時(shí),如圖1所示
∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=2AE=AD=BC,∴DE:BC=2:3,∴EF:FC=2:3;
②當(dāng)點(diǎn)E在線段DA的延長(zhǎng)線上時(shí),如圖2所示:
同①得:△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=4AE=AD=BC,∴DE:BC=4:3,∴EF:FC=4:3;
綜上所述:EF:FC的值是或;故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形紙片CD沿MN折疊(M,N在AD、BC上),AD∥BC,C′,D′為C、D的對(duì)稱點(diǎn),C′N交AD于E.
(1)若∠1=62°,則∠2=
(2)試判斷△EMN的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過(guò)天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:.
(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長(zhǎng))的文化墻PM是否需要拆除?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和正△BPC,則四邊形PCDE面積的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D、E分別是△ABC邊AB、BC上的點(diǎn),AD=2BD,BE=CE,設(shè)△ADF的面積為S1 , △CEF的面積為S2 , 若S△ABC=12,則S1﹣S2的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等邊△ABC的邊AC的延長(zhǎng)線上取一點(diǎn)E,以CE為邊作等邊△CDE,使它與△ABC位于直線AE的同側(cè).
(1)同學(xué)們對(duì)圖1進(jìn)行了熱烈的討論,猜想出如下結(jié)論,你認(rèn)為正確的有(填序號(hào)). ①△ACD≌△BCE;②△ACP≌△BCQ; ③△DCP≌△ECQ;④∠ARB=60°;⑤△CPQ是等邊三角形.
(2)當(dāng)?shù)冗叀鰿ED繞C點(diǎn)旋轉(zhuǎn)一定角度后(如圖2),(1)中有哪些結(jié)論還是成立的?并對(duì)正確的結(jié)論分別予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過(guò)點(diǎn)G作EF∥BC交AB于E,交AC于F,過(guò)點(diǎn)G作GD⊥AC于D,下列四個(gè)結(jié)論: ①EF=BE+CF;
②∠BGC=90°+ ∠A;
③點(diǎn)G到△ABC各邊的距離相等;
④設(shè)GD=m,AE+AF=n,則S△AEF=mn.
其中正確的結(jié)論是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com