【題目】某中學(xué)庫存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)校.現(xiàn)有甲、乙兩個木工組,甲組每天修理桌椅16套,乙組每天修理桌椅比甲組多8套.甲組單獨修理完這些桌椅比乙組單獨修理完多用20天.學(xué)校每天付甲組80元修理費,付乙組120元修理費.
(1)該中學(xué)庫存多少套桌椅?
(2)在修理過程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天20元生活補助費.現(xiàn)有三種修理方案:
方案一,由甲組單獨修理;
方案二,由乙組單獨修理;
方案三,甲、乙兩組同時修理.
你認(rèn)為哪種方案省時又省錢?為什么.
【答案】(1)960套;(2)選擇方案三更省時省錢
【解析】
(1)設(shè)該中學(xué)庫存x套桌椅,根據(jù)題意列出一元一次方程即可求解;
(2)分別求出三種方案的錢數(shù)與天數(shù),即可比較求解.
解:(1)設(shè)該中學(xué)庫存x套桌椅,小明需要天,小亮需要天,
由題意得:
解方程得:x=960
答:該中學(xué)庫存960套桌椅,
(2) 設(shè)3種修理方案的費用分別為y1, y2, y3元
則,天數(shù)為960÷16=60;
,天數(shù)為960÷24=40;
,天數(shù)為960÷(16+24)=24,
綜上所知,選擇方案三更省時省錢.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,若AB=CD.
(1)圖①中有 對全等三角形,并把它們寫出來 ;
(2)求證:BG=DG,AG=CG;
(3)若將△ABF的邊AF沿GA方向移動變?yōu)閳D②時,其余條件不變,第(2)題中的結(jié)論是否成立,如果成立,請予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片,第1次剪成四個大小形狀一樣的小正方形,第2次將其中的一個小正方形再按同樣的方法剪成四個小正方形,然后再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進(jìn)行下去,如果共剪次,則可剪出 個正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB上順次有三個點C,D,E,把線段AB分為了2:3:4:5四部分,且AB=28,
(1)求線段AE的長;
(2)若M,N分別是DE,EB的中點,求線段MN的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D為AC的中點,△ABD的周長比△BDC的周長大2,且BC的邊長是方程的解,求△ABC三邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地.甲、乙兩人同時出發(fā),甲騎電動車從A地勻速前往B地,行走到一半路程時出現(xiàn)故障后停車維修,修好車后以原速繼續(xù)行駛到B地;乙騎摩托車從B地勻速前往A地,到達(dá)A地后立即按原路原速返回,結(jié)果兩人同時到B地.甲、乙兩人與B地的距離y(km)與乙行駛時間x(h)之間的函數(shù)圖象如圖所示.
(1)求甲修車前的速度.
(2)求甲、乙第一次相遇的時間.
(3)若兩人之間的距離不超過10km時,能夠用無線對講機保持聯(lián)系,請直接寫出乙在行進(jìn)中能用無線對講機與甲保持聯(lián)系的x取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC三個頂點都在格點上,點A、B、C的坐標(biāo)分別為A(﹣4,1),B(﹣1,1),C(﹣1,3)請解答下列問題:
(1)畫出△ABC關(guān)于原點O的中心對稱圖形△A1B1C1,并寫出點C的對應(yīng)點C1的坐標(biāo);
(2)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出點A旋轉(zhuǎn)至A2經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,4).
(1)求此拋物線的解析式;
(2)設(shè)點P(2,n)在此拋物線上,AP交y軸于點E,連接BE,BP,請判斷△BEP的形狀,并說明理由;
(3)設(shè)拋物線的對稱軸交x軸于點D,在線段BC上是否存在點Q,使得△DBQ成為等腰直角三角形?若存在,求出點Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A'B'C′,圖中標(biāo)出了點B的對應(yīng)點B′.利用網(wǎng)格點和直尺,完成下列各題:
(1)補全△A′B'C’;
(2)畫出BC邊長的高線AE;
(3)連接AA′,BB′,則這兩條線段之間的關(guān)系是 ;
(4)點Q為格點(點Q不與點B重合),且△ACQ的面積等于△ABC的面積,則圖中滿足要求的Q點共有 個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com