9.如圖.過點(diǎn)A1(1,0)作x軸的垂線,交直線y=2x于點(diǎn)B1;點(diǎn)A2與點(diǎn)O關(guān)于直線A1B1對(duì)稱,過點(diǎn)A2作x軸的垂線,交直線y=2x于點(diǎn)B2;點(diǎn)A3與點(diǎn)O關(guān)于直線A2B2對(duì)稱.過點(diǎn)A3作x軸的垂線,交直線y=2x于點(diǎn)B3;…按此規(guī)律作下去.則點(diǎn)A3的坐標(biāo)為(4,0),點(diǎn)Bn的坐標(biāo)為(2n-1,2n).

分析 先根據(jù)題意求出A2點(diǎn)的坐標(biāo),再根據(jù)A2點(diǎn)的坐標(biāo)求出B2的坐標(biāo),以此類推總結(jié)規(guī)律便可求出點(diǎn)A4、Bn的坐標(biāo).

解答 解:∵點(diǎn)A1坐標(biāo)為(1,0),
∴OA1=1,
過點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,可知B1點(diǎn)的坐標(biāo)為(1,2),
∵點(diǎn)A2與點(diǎn)O關(guān)于直線A1B1對(duì)稱,
∴OA1=A1A2=1,
∴OA2=1+1=2,
∴點(diǎn)A2的坐標(biāo)為(2,0),B2的坐標(biāo)為(2,4),
∵點(diǎn)A3與點(diǎn)O關(guān)于直線A2B2對(duì)稱.故點(diǎn)A3的坐標(biāo)為(4,0),B3的坐標(biāo)為(4,8),
此類推便可求出點(diǎn)An的坐標(biāo)為(2n-1,0),點(diǎn)Bn的坐標(biāo)為(2n-1,2n).
故答案為(4,0),(2n-1,2n).

點(diǎn)評(píng) 本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征:一次函數(shù)圖象上點(diǎn)的坐標(biāo)滿足其解析式.也考查了軸對(duì)稱的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.將一元二次方程x2-4x-1=0配方后得到的結(jié)果是(  )
A.(x+4)2=1B.(x-4)2=3C.(x+2)2=4D.(x-2)2=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.計(jì)算:2x2-18y2=2(x+3y)(x-3y).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.現(xiàn)定義一種新運(yùn)算:對(duì)任意有理數(shù)a、b,都有a?b=a2-b,例如3?2=32-2=7,2?(-1)=5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點(diǎn)E.
(1)若D為AC的中點(diǎn),證明DE是⊙O的切線;
(2)若OA=$\sqrt{3}$,CE=1,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.把函數(shù)y=3x2+6x+10轉(zhuǎn)化成y=a(x-h)2+k的形式,然后指出它的圖象開口方向,對(duì)稱軸,頂點(diǎn)坐標(biāo)和最值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.約分$\frac{{a}^{2}^{3}}{a^{2}}$=ab.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.若-5x2ym與x2y是同類項(xiàng),m=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.一根1米長的木棒,小明第一次截去全長的$\frac{1}{3}$,第二次截去余下的$\frac{1}{3}$,依次截去每一次余下的$\frac{1}{3}$,則第5次截去后剩下的木棒長$\frac{32}{243}$米.

查看答案和解析>>

同步練習(xí)冊(cè)答案