【題目】如圖,矩形中,,點為上一點,將沿折疊得到,點為上一點,將沿折疊得到,且落在線段上,當時,則的長為___.
【答案】2
【解析】
由折疊可得∠AEH=∠BEC=90°,進而得出Rt△AEH中,AE2+EH2=AH2,設BE=x,則EF=x,CE=6-x=EG,再根據(jù)勾股定理,即可得到方程x2+42+(6-x)2+(6-2x)2=(2x-2)2+62,解該一元二次方程,即可得到BE的長.
如圖,連接AH,
由折疊可得,BE=FE,EC=EG,GH=CH,∠AEB=∠AEF,∠CEH=∠GEH,
∴∠AEH=∠BEC=90°,
∴Rt△AEH中,AE2+EH2=AH2,①
設BE=x,則EF=x,CE=6-x=EG,
∴GF=6-2x=GH=CH,DH=4-(6-2x)=2x-2,
∵∠B=∠C=∠D=90°,
∴Rt△ABE中,AE2=EB2+AB2=x2+42,
Rt△CEH中,HE2=EC2+CH2=(6-x)2+(6-2x)2,
Rt△ADH中,AH2=DH2+AD2=(2x-2)2+62,
代入①式,可得
x2+42+(6-x)2+(6-2x)2=(2x-2)2+62,
解得x1=2,x2=12(舍去),
∴BE的長為2,
故答案為:2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ADB=90°,AB=2AD,BD的垂直平分線分別交AB,CD于點E,F,垂足為O.
(1)求tan ∠ABD的值;
(2)求證:OE=OF;
(3)連接DE,BF,若AD=6,求DEBF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級男生的體能情況,體育老師從中隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問題:
(1)本次抽測的男生有________人,抽測成績的眾數(shù)是_________;
(2)請將條形圖補充完整;
(3)若規(guī)定引體向上6次以上(含6次)為體能達標,則該校125名九年級男生中估計有多少人體能達標?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC,點O是AC的中點,點P是AC上的一個動點(點P不與點A,O,C重合).過點A,點C作直線BP的垂線,垂足分別為點E和點F,連接OE,OF.
(1)如圖1,請直接寫出線段OE與OF的數(shù)量關系;
(2)如圖2,當∠ABC=90°時,請判斷線段OE與OF之間的數(shù)量關系和位置關系,并說明理由
(3)若|CF﹣AE|=2,EF=2,當△POF為等腰三角形時,請直接寫出線段OP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系中,四邊形是矩形,,,動點從點出發(fā),沿射線方向以每秒個單位長度的速度運動;同時動點從點出發(fā),沿軸正半軸方向以每秒個單位長度的速度運動.設點,點的運動時間為.
(1)當時,按要求回答下列問題
①______________;
②求經過,,三點的拋物線的解析式,若將拋物線在軸上方的部分圖象記為,已知直線與有兩個不同的交點,求的取值范圍;
(2)連接,點,在運動過程中,記與矩形重疊部分的面積為,求與的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,D為BC上一點,過點D作DE⊥AB于E.
(1)連接AD,取AD中點F,連接CF,CE,FE,判斷△CEF的形狀并說明理由
(2)若BD=CD,將△BED繞著點D逆時針旋轉n°(0<n<180),當點B落在Rt△ABC的邊上時,求出n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2 ,0)和(3 ,0)之間,對稱軸是x=1.對于下列結論:① ab<0;② 2a+b=0;③ 3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤ 當-1<x<3時,y>0. 其中正確結論的個數(shù)為( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將兩張長為5,寬為1的矩形紙條交叉,讓兩個矩形對角線交點重合,且使重疊部分成為一個菱形.當兩張紙條垂直時,菱形周長的最小值是4,把一個矩形繞兩個矩形重合的對角線交點旋轉一定角度,在旋轉過程中,得出所有重疊部分為菱形的四邊形中,周長的最大值是( )
A. 8B. 10C. 10.4D. 12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.
(1)求證:AC是⊙O的切線;
(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com