等腰梯形兩底長分別為5cm和11cm,一個底角為60°,則腰長為_   __.
6cm

試題分析:過點A作AE⊥BC于點E,根據(jù)等腰梯形的性質可得出AE的長度,在Rt△ABE中可求出腰長AB的長度.
過點A作AE⊥BC于點E,

由題意得,AD=5cm,BC=11cm,
則AE=(BCAD)=3cm,
∵∠B=60°,
∴AB=2BE=6cm.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE∥AD,若AC=2,CE=4,求四邊形ACEB的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在□ABDC中,分別取AC、BD的中點E和F,連接BE、CF,過點A作AP∥BC,交DC的延長線于點P.

(1)求證:△ABE≌△DCF;
(2)當∠P滿足什么條件時,四邊形BECF是菱形?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.

(1)當正方形ADEF繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

(2)當正方形ADEF繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點G.

①求證:BD⊥CF;
②當AB=4,AD=時,求線段FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)如圖,在長方形ABCD中,將△ABC沿AC對折至△AEC位置,CE與AD交于點F.

(1)試說明:AF=FC;
(2)如果AB=3,BC=4,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角形板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是(       ).
A.16B.12C.8D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

長方形的一條對角線的長為10cm,一邊長為6cm,它的面積是(   )
A.60cm2B.64cm2C.24cm2D.48cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖①,將四邊形紙片ABCD沿兩組對邊中點連線剪切為四部分,將這四部分密鋪可得到如圖②所示的平行四邊形,若要密鋪后的平行四邊形為矩形,則四邊形ABCD需要滿足的條件是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點E,F(xiàn)分別是銳角∠A兩邊上的點,AE=AF,分別以點E,F(xiàn)為圓心,以AE的長為半徑畫弧,兩弧相交于點D,連接DE,DF.

(1)請你判斷所畫四邊形的性狀,并說明理由;
(2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長.

查看答案和解析>>

同步練習冊答案