【題目】如圖,在直角三角形ABC中,ACB=90°,AC=BC=10,將△ABC繞點B沿順時針方向旋轉(zhuǎn)90°得到△A1BC1.
(1)線段A1C1的長度是 ,∠CBA1的度數(shù)是 .
(2)連結(jié)CC1,求證:四邊形CBA1C1是平行四邊形.
【答案】(1)10, 135°;(2)證明見解析.
【解析】
(1)由于將△ABC繞點B沿順時針方向旋轉(zhuǎn)90°得到△A1BC1,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到A1C1=AC,∠CBC1=90°,而△ABC是等腰直角三角形,利用等腰直角三角形的性質(zhì)即可求出∠CBA1的度數(shù);
(2)由∠A1C1B=∠C1BC=90°可以得到A1C1∥BC,又A1C1=AC=BC,利用評選四邊形的判定即可證明題目的問題.
(1)∵將△ABC繞點B沿順時針方向旋轉(zhuǎn)90°得到△A1BC1.
∴A1C1=10,∠CBC1=90°,
而△ABC是等腰直角三角形,
∴∠A1BC1=45°,
∴∠CBA1=135°;
(2)證明:∵∠A1C1B=∠C1BC=90°,
∴A1C1∥BC.
又∵A1C1=AC=BC,
∴四邊形CBA1C1是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,東營市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對校園安全知識達(dá)到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一.部分,且過點(-3,0),(1,0),下列說法錯誤的是( )
A.2a-b=0
B.4a-2b十c<0.
C.若(-4,y1),( ,y2)是拋物線上兩點,則y1> y2
D.y <0時,-3<x < 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,點P由C點出發(fā)以2m/s的速度向終點A勻速移動,同時點Q由點B出發(fā)以1m/s的速度向終點C勻速移動,當(dāng)一個點到達(dá)終點時另一個點也隨之停止移動.
(1)經(jīng)過幾秒△PCQ的面積為△ACB的面積的?
(2)經(jīng)過幾秒,△PCQ與△ACB相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊抓住商機,購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他各項費用80元.
銷售單價x(元) | 3.5 | 5.5 |
銷售量y(袋) | 280 | 120 |
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD⊥AC于D,CE⊥AB于E。
(1)求證:△ABD∽△ACE
(2)連接DE,求證:∠ADE=∠ABC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c,函數(shù)值y與自變量x之間的部分對應(yīng)值如下表:
x | … | ﹣4 | ﹣1 | 0 | 1 | … |
y | … | ﹣2 | ﹣1 | ﹣2 | ﹣7 | … |
(1)此二次函數(shù)圖象的對稱軸是直線,此函數(shù)圖象與x軸交點個數(shù)為 .
(2)求二次函數(shù)的函數(shù)表達(dá)式;
(3)當(dāng)﹣5<x<﹣1時,請直接寫出函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年女排世界杯中,中國女排以11站全勝且只丟3局的成績成功衛(wèi)冕本屆世界杯冠軍.某校七年級為了弘揚女排精神,組建了排球社團(tuán),通過測量同學(xué)們的身高(單位:cm),并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息,解答下列問題.
(1)填空:樣本容量為___,a=___;
(2)把頻數(shù)分布直方圖補充完整;
(3)若從該組隨機抽取1名學(xué)生,估計這名學(xué)生身高低于165cm的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝超市購進(jìn)單價為30元的童裝若干件,物價部門規(guī)定其銷售單價不低于每件30元,不高于每件60元.銷售一段時間后發(fā)現(xiàn):當(dāng)銷售單價為60元時,平均每月銷售量為80件,而當(dāng)銷售單價每降低10元時,平均每月能多售出20件.同時,在銷售過程中,每月還要支付其他費用450元.設(shè)銷售單價為x元,平均月銷售量為y件.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)當(dāng)銷售單價為多少元時,銷售這種童裝每月可獲利1800元?
(3)當(dāng)銷售單價為多少元時,銷售這種童裝每月獲得利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com