【題目】如圖,在ABCD中,CFAB于點(diǎn)F,過(guò)點(diǎn)DDEBC的延長(zhǎng)線于點(diǎn)E,且CFDE

1)求證:△BFC≌△CED;

2)若∠B60°,AF5,求BC的長(zhǎng).

【答案】1)詳見(jiàn)解析;(2BC10

【解析】

1)由平行四邊形的性質(zhì)可得ABCD,可得∠B=∠DCE,由AAS可證BFC≌△CED;

2)設(shè)BCCDABx,由直角三角形的性質(zhì)可得(x5)=x,可求x的值,即可求BC的長(zhǎng).

1)證明:∵四邊形ABCD是平行四邊形

ABCD,ABCD

∴∠B=∠DCE

CFABDEBC,

∴∠CFB=∠DEC90°,且CFDE,∠B=∠DCE

∴△BFC≌△CED AAS

2)∵△BFC≌△CED

BCDCAB

設(shè)BCx

CDABx

RtBCF中,∠B60°

∴∠BCF30°

FBBC

∴(x5)=x

解得x10

BC10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點(diǎn),如圖,作正方形,點(diǎn)在直線上,點(diǎn)軸上,將圖中陰影部分三角形的面積從左到右依次記為,則

1的值為___________

2的值為___________(的代數(shù)式表示,為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱(chēng)三角形為“智慧三角形”.如圖,在平面直角坐標(biāo)系中,矩形的邊,點(diǎn),在邊存在點(diǎn),使得為“智慧三角形”,則點(diǎn)的坐標(biāo)為:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長(zhǎng)線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是_______(只填寫(xiě)序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABCAED都是等腰直角三角形,∠BAC=EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上,如圖2,ABC以點(diǎn)A為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn).

1)證明:BE=CD

2)當(dāng)AC=ED時(shí),探究在ABC旋轉(zhuǎn)的過(guò)程中,是否存在這樣的旋轉(zhuǎn)角α,使以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出角α的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)分別是邊的中點(diǎn),延長(zhǎng)到點(diǎn),使,得四邊形.若使四邊形是正方形,則應(yīng)在中再添加一個(gè)條件為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)期間,甲、乙兩家水果店以同樣的價(jià)格銷(xiāo)售同一種水果,它們的優(yōu)惠方案分別為:甲水果店,一次性購(gòu)水果超過(guò)元,超過(guò)部分打七折;乙水果店,一次性購(gòu)水果超過(guò)元,超過(guò)部分打五折,設(shè)水果售價(jià)為(單位:元),在甲.乙兩家水果店購(gòu)水果應(yīng)付金額為(單位:元)(單位:元),之間的函數(shù)關(guān)系如圖所示.

1)求甲水果店購(gòu)水果應(yīng)付金額與水果售價(jià)之間的函數(shù)關(guān)系式;

2)求交點(diǎn)的坐標(biāo);

3)根據(jù)圖象,請(qǐng)直接寫(xiě)出春節(jié)期間選擇哪家水果店購(gòu)水果更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BCECD邊上一點(diǎn),將BCE沿BE折疊,使得C落到矩形內(nèi)點(diǎn)F的位置,連接AF,若tanBAF,則CE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙OAB于點(diǎn)D,交AC于點(diǎn)G,直線DF是⊙O的切線,D為切點(diǎn),交CB的延長(zhǎng)線于點(diǎn)E.

(1)求證:DFAC;

(2)求tanE的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案