如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA=2,0C=6,在OC上取點(diǎn)D將△AOD沿AD翻折,使O點(diǎn)落在AB邊上的E點(diǎn)處,將一個(gè)足夠大的直角三角板的頂點(diǎn)P從D點(diǎn)出發(fā)沿線段DA→AB移動(dòng),且一直角邊始終經(jīng)過(guò)點(diǎn)D,另一直角邊所在直線與直線DE,BC分別交于點(diǎn)M,N.
(1)填空:D點(diǎn)坐標(biāo)是(______,______),E點(diǎn)坐標(biāo)是(______,______);
(2)如圖1,當(dāng)點(diǎn)P在線段DA上移動(dòng)時(shí),是否存在這樣的點(diǎn)M,使△CMN為等腰三角形?若存在,請(qǐng)求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),設(shè)P點(diǎn)坐標(biāo)為(x,2),記△DBN的面積為S,請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式,并求出S隨x增大而減小時(shí)所對(duì)應(yīng)的自變量x的取值范圍.
(1)∵將△AOD沿AD翻折,使O點(diǎn)落在AB邊上的E點(diǎn)處,
∴∠OAD=∠EAD=45°,DE=OD,
∴OA=OD,
∵OA=2,
∴OD=2,
∴D點(diǎn)坐標(biāo)是(2,0),DE=OD=2,
∴E點(diǎn)坐標(biāo)是(2,2),
故答案為:(2,0),(2,2);

(2)存在點(diǎn)M使△CMN為等腰三角形,理由如下:
由翻折可知四邊形AODE為正方形,
過(guò)M作MH⊥BC于H,
∵∠PDM=∠PMD=45°,則∠NMH=∠MNH=45°,
NH=MH=4,MN=4
2

∵直線OE的解析式為:y=x,依題意得MNOE,
∴設(shè)MN的解析式為y=x+b,
而DE的解析式為x=2,BC的解析式為x=6,
∴M(2,2+b),N(6,6+b),
CM=
42+(2+b)2
,CN=6+b,MN=4
2
,
分三種情況討論:
①當(dāng)CM=CN時(shí),
42+(2+b)2=(6+b)2
解得:b=-2,此時(shí)M(2,0);
②當(dāng)CM=MN時(shí),
42+(2+b)2=(4
2
2,
解得:b1=2,b2=-6(不合題意舍去),
此時(shí)M(2,4);
③當(dāng)CN=MN時(shí),
6+b=4
2

解得:b=4
2
-6,此時(shí)M(2,4
2
-4);
綜上所述,存在點(diǎn)M使△CMN為等腰三角形,M點(diǎn)的坐標(biāo)為:
(2,0),(2,4),(2,4
2
-4);

(3)根據(jù)題意得:
當(dāng)0≤x≤2時(shí),
∵∠BPN+∠DPE=90°,
∠BPN+∠BNP=90°,
∴∠DPE=∠BNP,
又∠PED=∠NBP=90°,
∴△DEP△PBN,
PB
DE
=
BN
EP
,
6-x
2
=
BN
2-x
,
∴BN=
(2-x)(6-x)
2
,
∴S△DBN=
1
2
•BN•BE
=
1
2
(2-x)(6-x)
2
•4
整理得:S=x2-8x+12;
當(dāng)2<x≤6時(shí),
∵△PBN△DEP,
PB
NB
=
DE
PB
,
x-2
NB
=
2
6-x

∴BN=
(x-2)(6-x)
2
,
∴S△DBN=
1
2
•BN•BE,
=
1
2
(x-2)(6-x)
2
×4,
整理得:S=-x2+8x-12;
則S與x之間的函數(shù)關(guān)系式:
S=x2-8x+12(0≤x≤2)
S=-x2+8x-12(2<x≤6)

①當(dāng)0≤x≤2時(shí),S=x2-8x+12=(x-4)2-4,
當(dāng)x≤4時(shí),S隨x的增大而減小,即0≤x≤2,
②當(dāng)2<x≤6時(shí),S=-x2+8x-12=-(x-4)2+4,
當(dāng)x≥4時(shí),S隨x的增大而減小,即4≤x≤6,
綜上所述:S隨x增大而減小時(shí),0≤x≤2或4≤x≤6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)點(diǎn)A(2,3),B(-1,-1)兩點(diǎn)的直線解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知在平面直角坐標(biāo)系中,點(diǎn)A(3,2),B(2,-1),點(diǎn)P在x軸上運(yùn)動(dòng),為使|PA-PB|最大,則點(diǎn)P的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系xOy中,直線y=kx+b交x軸負(fù)半軸于A(-1,0),交y軸正半軸于B,C是x軸負(fù)半軸上一點(diǎn),且CA=
3
4
CO,△ABC的面積為6.

(1)求C點(diǎn)的坐標(biāo);
(2)求直線AB的解析式;
(3)D是第二象限內(nèi)一動(dòng)點(diǎn),且OD⊥BD,直線BE垂直射線CD于E,OF⊥OD交直線BE于F.當(dāng)線段OD,BD的長(zhǎng)度發(fā)生改變時(shí),∠BDF的大小是否發(fā)生改變?若改變,請(qǐng)說(shuō)明理由;若不變,請(qǐng)證明并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-3,6),點(diǎn)B,點(diǎn)C分別在x軸的負(fù)半軸和正半軸上,OB,OC的長(zhǎng)分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求點(diǎn)B,點(diǎn)C的坐標(biāo);
(2)若平面內(nèi)有M(1,-2),D為線段OC上一點(diǎn),且滿足∠DMC=∠BAC,求直線MD的解析式;
(3)在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q和點(diǎn)P(點(diǎn)P在直線AC上),使以O(shè),P,C,Q為頂點(diǎn)的四邊形是正方形?若存在,請(qǐng)直接寫出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在校運(yùn)動(dòng)會(huì)男子400m比賽中,甲乙兩名運(yùn)動(dòng)員同時(shí)起跑.剛跑出80m,甲不慎摔倒,他迅速地爬起來(lái)并按原速度再次投入比賽,最終取得了優(yōu)異的成績(jī).如圖分別表示甲、乙兩名運(yùn)動(dòng)員所跑的路程y(m)與比賽時(shí)間x(s)之間的關(guān)系(假設(shè)他們跑步時(shí)都是勻速的).根據(jù)圖象解答下列問(wèn)題:
(1)圖中線段OA表示的是______(填“甲”或填“乙”)所跑的路程與比賽時(shí)間之間的關(guān)系;
(2)求甲跑步的速度;
(3)甲再次投入比賽后,在距離終點(diǎn)多遠(yuǎn)處追上乙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

“震災(zāi)無(wú)情人有情“,玉樹(shù)地震牽動(dòng)了全國(guó)人民的心,武警某部隊(duì)接到命令,運(yùn)送一批救災(zāi)物資到災(zāi)區(qū),貨車在公路A處加滿油后,以每小時(shí)60千米的速度勻速行駛,前往與A處相距360千米的災(zāi)區(qū)B處.下表記錄的是貨車一次加滿油后油箱內(nèi)余油量y(升)與行駛時(shí)間x(時(shí))之間關(guān)系:
行駛時(shí)間x(小時(shí))01234
余油量y(升)150120906030
(1)請(qǐng)你用學(xué)過(guò)的函數(shù)中的一種建立x與y之間的函數(shù)關(guān)系式,說(shuō)明選擇這種函數(shù)的理由;(不要求寫出自變量的取值范圍)
(2)如果貨車的行駛速度和每小時(shí)的耗油量不變,貨車行駛4小時(shí)后到達(dá)C處,C的前方12千米的D處有一加油站,那么在D處至少加多少升油,才能使貨車到達(dá)災(zāi)區(qū)B處卸去貨物后能順利返回D處加油?(根據(jù)駕駛經(jīng)驗(yàn),為保險(xiǎn)起見(jiàn),油箱內(nèi)余油量應(yīng)隨時(shí)不少于10升)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為了鼓勵(lì)市民節(jié)約用水,市政府制定了新的收費(fèi)標(biāo)準(zhǔn):設(shè)用水量為x噸,需付水費(fèi)為y元,y與x的函數(shù)圖象如圖.
(1)寫出y與x的函數(shù)關(guān)系.
(2)小華家今年5月交水費(fèi)17元,則這月小華家用水多少噸?
(3)已知某住宅小區(qū)100戶居民5月份共付水費(fèi)1682元,且該月每戶用水量均不超過(guò)15噸,求該月用水量不超過(guò)10噸的居民最多可能有多少戶?
A型B型
成本(萬(wàn)元/套)2030
售價(jià)(萬(wàn)元/套)2538

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=-
4
3
x+8的圖象與x軸,y軸交于A、B兩點(diǎn),OD=
1
4
OB,AC=
1
4
AB,過(guò)點(diǎn)C作CE⊥OA于點(diǎn)E,點(diǎn)M從點(diǎn)C出發(fā),沿CD方向運(yùn)動(dòng),過(guò)點(diǎn)M作MN⊥OA于點(diǎn)N,過(guò)點(diǎn)N作NPAB,交OB于點(diǎn)P,當(dāng)點(diǎn)N與點(diǎn)O重合時(shí)點(diǎn)M停止運(yùn)動(dòng).設(shè)AN=a.
(1)求點(diǎn)C的坐標(biāo);
(2)用含a的代數(shù)式表示NP;
(3)是否存在點(diǎn)M,使△MNP為等腰三角形?若存在,請(qǐng)求出所有滿足要求的a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案