【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.

(1)求證:AC是⊙O的切線;
(2)當(dāng)BD是⊙O的直徑時(如圖2),求∠CAD的度數(shù).

【答案】
(1)證明:連接AO,延長AO交⊙O于點E,則AE為⊙O的直徑,連接DE,如圖所示:

∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,

∴∠ABC=∠CAD,

∵AE為⊙O的直徑,

∴∠ADE=90°,

∴∠EAD=90°﹣∠AED,

∵∠AED=∠ABD,

∴∠AED=∠ABC=∠CAD,

∴∠EAD=90°﹣∠CAD,

即∠EAD+∠CAD=90°,

∴EA⊥AC,

∴AC是⊙O的切線;


(2)解:∵BD是⊙O的直徑,

∴∠BAD=90°,

∴∠ABC+∠ADB=90°,

∵∠ABC:∠ACB:∠ADB=1:2:3,

∴4∠ABC=90°,

∴∠ABC=22.5°,

由(1)知:∠ABC=∠CAD,

∴∠CAD=22.5°.


【解析】(1)證明切線須連接半徑,證直線與半徑垂直;(2)利用直徑所對的圓周角等于90度可得出4∠ABC=90°,再轉(zhuǎn)化為∠CAD=22.5°.
【考點精析】解答此題的關(guān)鍵在于理解圓周角定理的相關(guān)知識,掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半,以及對三角形的外接圓與外心的理解,了解過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(觀察)方程的解是的解是;

的解是的解是

(發(fā)現(xiàn))根據(jù)你的閱讀回答問題:

(1)的解為_______;

(2)關(guān)于的方程的解為_______(用含的代數(shù)式表示),并利用“方程的解的概念”驗證.

(類比)

(3)關(guān)于的方程的解為_________(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A2,3),點B﹣21),在x軸上存在點PAB兩點的距離之和最小,則P點的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺進(jìn)價分別為200,170元的A,B兩種型號的電風(fēng)扇表中是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

(進(jìn)價、售價均保持不變利潤=銷售收入-進(jìn)貨成本)

(1)A,B兩種型號的電風(fēng)扇的銷售單價.

(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30,A種型號的電風(fēng)扇最多能采購多少臺?

(3)(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣bx+0.5b﹣a與x軸交于A、B兩點,則線段AB的最小值為( )
A.0.5
B.2
C.
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列情境①分別可以用哪幅圖來近似地刻畫?正確的順序是(

①一杯越來越?jīng)龅乃?/span>(水溫與時間的關(guān)系);②一面冉冉升起的旗子(高度與時間的關(guān)系);③足球守門員大腳開出去的球(高度與時間的關(guān)系);④勻速行駛的汽車(速度與時間的關(guān)系).

A. cdabB. acbdC. dabcD. cbad

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周老師為鍛煉身體一直堅持步行上下班。已知學(xué)校到周老師家總路程為2000米,一天,周老師下班后,以45/分的速度從學(xué)校往家走,走到離學(xué)校900米時,正好遇到一個朋友,停下又聊了20分鐘,之后以110/分的速度走回了家.周老師回家過程中,離家的路程S(米)與所用時間t(分)之間的關(guān)系如圖所示.

1)求a的值;

2b= c= .

3)求周老師從學(xué)校到家的平均速度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

甲列車從A地開往B地,每小時行駛60千米,乙列車同時從B地開往A地,每小時行駛90千米.已知A,B兩地相距200km

1)經(jīng)過多長時間兩車相遇;

2)兩車相遇的地方離A地多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)新增了一個化工項目,為了節(jié)約資源,保護(hù)環(huán)境,該企業(yè)決定購買A、B兩種型號的污水處理設(shè)備共8臺,具體情況如下表:


A

B

價格(萬元/臺)

12

10

月污水處理能力(噸/月)

200

160

經(jīng)預(yù)算,企業(yè)最多支出89萬元購買設(shè)備,且要求月處理污水能力不低于1380噸.

1)該企業(yè)有幾種購買方案?

2)哪種方案更省錢,說明理由.

查看答案和解析>>

同步練習(xí)冊答案