23、如圖在△ABC中,D是∠ACB與∠ABC的角平分線的交點,BD的延長線交AC于E,且∠EDC=50°,求∠A的度數(shù).
分析:首先根據(jù)鄰補角的概念求得:∠BDC=180°-50°=130°,再根據(jù)三角形的內(nèi)角和定理以及角平分線的性質(zhì),即可分析得到:∠BDC=90°+$frac{1}{2}$∠A,從而求出∠A.
解答:解:∵∠EDC=50°,
∴∠BDC=180°-50°=130°,
∴∠DBC+∠DCB=180°-130°=50°,
又D是∠ACB與∠ABC的角平分線的交點,
∴∠ABC+∠ACB=50°×2=100°,
∴∠A=80°.
點評:特別注意此題中,可得:∠BDC=90°+$frac{1}{2}$∠A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點,則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習(xí)冊答案