精英家教網(wǎng)如圖,已知E是矩形ABCD的邊AD上的點(diǎn),AE:ED=1:3,CE與BA的延長線交于點(diǎn)F.如果三角形AEF的面積為1,那么四邊形ABCD的面積為
 
分析:根據(jù)相似三角形的性質(zhì),可求CD、AD,即可求四邊形ABCD的面積.
解答:解:設(shè)AE=a,則ED=3a,
設(shè)AF=b,三角形AEF的面積為1,即
1
2
ab=1,則ab=2,
根據(jù)AB∥CD,得到△AEF∽△DEC,
AF
CD
=
AE
DE
=
1
3
,
∴CD=3b,AD=4a,
四邊形ABCD的面積為4a•3b=12ab=24.
點(diǎn)評:本題主要運(yùn)用了相似三角形的性質(zhì),相似三角形的對應(yīng)邊的比相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,已知P是矩形ABCD的內(nèi)的一點(diǎn).求證:PA2+PC2=PB2+PD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知E是矩形ABCD的邊CD上一點(diǎn),BF⊥AE于F,試說明:△ABF∽△EAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知O是矩形ABCD內(nèi)一點(diǎn),且OA=1,OB=3,OC=4,那么OD的長為( 。
A、2
B、2
2
C、2
3
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OABC是矩形,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OC=6cm,OA=8cm.點(diǎn)P從點(diǎn)A開始沿邊AO向點(diǎn)O以1cm/s的速度移動(dòng),與此同時(shí),點(diǎn)Q從點(diǎn)C開始沿CB向點(diǎn)B以1cm/s的速度移動(dòng).如果P、Q分別從A,C同時(shí)出發(fā).

(1)①若連接OQ、PB,試判斷四邊形OPBQ的形狀,并說明理由;
②若連接PQ、OB,經(jīng)過幾秒?使得QP⊥OB;
(2)點(diǎn)K在x軸上,經(jīng)過幾秒時(shí)?△PQK是等邊三角形,并求點(diǎn)K的坐標(biāo).
(3)點(diǎn)E為OC邊上的一動(dòng)點(diǎn),試說明PE+QE的最小值是一個(gè)定值,并求出這個(gè)值.

查看答案和解析>>

同步練習(xí)冊答案