【題目】某校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個,比賽結(jié)束后隨機抽查部分學生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖的一部分.
組別 | 正確字數(shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計表中,m= ,n= ,并補全條形統(tǒng)計圖.
(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是 .
(3)若該校共有900名學生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計這所學校本次比賽聽寫不合格的學生人數(shù).
【答案】(1)30,20;(2)90°;(3)450.
【解析】試題分析:(1)根據(jù)條形圖和扇形圖確定B組的人數(shù)環(huán)繞所占的百分比求出樣本容量,求出m、n的值;
(2)求出C組”所占的百分比,得到所對應的圓心角的度數(shù);
(3)求出不合格人數(shù)所占的百分比,求出該校本次聽寫比賽不合格的學生人數(shù).
試題解析:(1)從條形圖可知,B組有15人,
從扇形圖可知,B組所占的百分比是15%,D組所占的百分比是30%,E組所占的百分比是20%,
15÷15%=100,
100×30%=30,
100×20%=20,
∴m=30,n=20.
故答案為:30;20;
統(tǒng)計圖如下:
(2)“C組”所對應的圓心角的度數(shù)是25÷100×360°=90°.
故答案為:90°;
(3)估計這所學校本次聽寫比賽不合格的學生人數(shù)為:900×(10%+15%+25%)=450人.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點A、B,且與經(jīng)過點C(2,0)的一次函數(shù)y=kx+b的圖象相交于點D,點D的橫坐標為4,直線CD與y軸相交于點E.
(1)直線CD的函數(shù)表達式為 ;(直接寫出結(jié)果)
(2)點Q為線段DE上的一個動點,連接BQ.
①若直線BQ將△BDE的面積分為1:2兩部分,試求點Q的坐標;
②點Q是否存在某個位置,將△BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的坐標軸上?若存在,求點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:,OB,OM,ON是內(nèi)的射線.
如圖1,若OM平分,ON平分當射線OB繞點O在內(nèi)旋轉(zhuǎn)時,______度
也是內(nèi)的射線,如圖2,若,OM平分,ON平分,當繞點O在內(nèi)旋轉(zhuǎn)時,求的大。
在的條件下,若,當在繞O點以每秒的速度逆時針旋轉(zhuǎn)t秒,如圖3,若::3,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,△ABC中,∠BAC=60°,內(nèi)角∠ABC、∠ACB的平分線相交于點O,則∠BOC=______;
(2)如圖2,△ABC中,∠BAC=60°,AD是△ABC的邊BC上的高,且∠B=∠1,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市居民使用自來水按如下標準收費(水費按月繳納)
月用水量 | 單價 |
不超過的部分 | 元 |
超過但不超過的部分 | 元 |
超過的部分 | 元 |
(1)當時,某用戶用了水,求該用戶這個月應該繳納的水費;
(2)設某用戶用水量為立方米,求該用戶應繳納的水費(用含的式子表達)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電腦公司經(jīng)銷甲種型號電腦,每臺售價4000元.為了增加收入,電腦公司決定再經(jīng)銷乙種型號電腦.已知甲種電腦每臺進價為3500元,乙種電腦每臺進價為3000元,公司預計用不多于5萬元且不少于4.8萬元的資金購進這兩種電腦共15臺.
(1)有幾種進貨方案?
(2)如果乙種電腦每臺售價為3800元,為打開乙種電腦的銷路,公司決定每售出一臺乙種電腦,返還顧客現(xiàn)金a元,要使(2)中所有方案獲利相同,a值應是多少? 若考慮投入成本最低,則應選擇哪種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中是真命題的是( )
A. 有兩邊和其中一邊的對角對應相等的兩個三角形全等
B. 兩條平行直線被第三條直線所截,則一組同旁內(nèi)角的平分線互相垂直
C. 三角形的一個外角等于兩個內(nèi)角的和
D. 等邊三角形既是中心對稱圖形,又是軸對稱圖形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是等邊三角形,P為平面內(nèi)的一個動點,BP=BA,0<∠PBC<180 ,DB平分∠PBC,且DB=DA.
(1)當BP與BA重合時(如圖1),求∠BPD的度數(shù);
(2)當BP在∠ABC的內(nèi)部時(如圖2),求∠BPD的度數(shù);
(3)當BP在∠ABC的外部時,請你直接寫出∠BPD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )
A. ∠A=∠D,∠B=∠E,∠C=∠FB. AB=DE,BC=EF,∠A=∠D
C. ∠B=∠E=90°,BC=EF,AC=DFD. ∠A=∠D,AB=DF,∠B=∠E
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com