【題目】“保護好環(huán)境,拒絕冒黑煙”荊州市公交公司將淘汰一條線路上“冒黑煙”較嚴(yán)重的公交車,計劃購買型和型兩種環(huán)保節(jié)能公交車輛,若購買型公交車輛,型公交車輛,共需萬元,若購買型公交車輛,型公交車輛,共需萬元.
(1)求購買購買型和型公交車每輛多少錢?
(2)預(yù)計在該線路上型和型公交車每輛年均載客量分別為萬人次和萬人次,若該公司購買型和型公交車的總費用不超過萬元,且確保這輛公交車在該線路上的年平均載客總和不少于萬人次,則該公司有哪幾種購車方案?
(3)在(2)的條件下,哪種購車方案總費用最少?最少費用為多少?
【答案】(1)A型公交車100萬元/輛,B型公交車150元/輛;(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;(3)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.
【解析】
(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;
(2)設(shè)購買A型公交車m輛,則B型公交車(10m)輛,由“購買A型和B型公交車的總費用不超過1200萬元”和“10輛公交車在該線路的年均載客總和不少于680萬人次”列出不等式組探討得出答案即可;
(3)分別求出各種購車方案總費用,再根據(jù)總費用作出判斷.
(1)設(shè)購買A型公交車x萬元/輛,B型公交車y元/輛,
由題意,得,
解得,
答:A型公交車100萬元/輛,B型公交車150元/輛;
(2)設(shè)A型公交車m輛,則B型公交車(10m)輛,
由題意,得,
解①,得m≥6;
解②,得m≤8;
解得6≤m≤8,
所以m=6,7,8,
則(10m)=4,3,2;
三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;
(3)①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;
②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;
③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;
故購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖,Rt△中, , ,點為斜邊的中點,點為邊上的一個動點.連結(jié),過點作的垂線與邊交于點,以為鄰邊作矩形.
(1)如圖1,當(dāng),點在邊上時,求DE和EF的長;
(2)如圖2,若,設(shè),矩形的面積為,求y關(guān)于的函數(shù)表達式;
(3)若,且點恰好落在Rt△的邊上,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,-4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店進行店慶活動,決定購進甲、乙兩種紀(jì)念品,若購進甲種紀(jì)念品1件,乙種紀(jì)念品2件,需要160元;購進甲種紀(jì)念品2件,乙種紀(jì)念品3件,需要280元.
(1)購進甲乙兩種紀(jì)念品每件各需要多少元?
(2)該商場決定購進甲乙兩種紀(jì)念品100件,并且考慮市場需求和資金周轉(zhuǎn),用于購買這些紀(jì)念品的資金不少于6300元,同時又不能超過6430元,則該商場共有幾種進貨方案?
(3)若銷售每件甲種紀(jì)念品可獲利30元,每件乙種紀(jì)念品可獲利12元,在第(2)問中的各種進貨方案中,哪種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ABC和△ADE均為等邊三角形,點D在邊BC上,連接CE.請?zhí)羁眨?/span>
①∠ACE的度數(shù)為 ;
②線段AC、CD、CE之間的數(shù)量關(guān)系為 .
(2)拓展探究
如圖2,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點D在邊BC上,連接CE.請判斷∠ACE的度數(shù)及線段AC、CD、CE之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖3,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC與BD交于點E,請直接寫出線段AC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)試判斷AB與AF,EB之間存在的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在校運會之前想了解九年級女生一分鐘仰臥起坐得分情況(滿分為7分),在九年級500名女生中隨機抽出60名女生進行一次抽樣摸底測試所得數(shù)據(jù)如下表:
(1)從表中看出所抽的學(xué)生所得的分?jǐn)?shù)數(shù)據(jù)的眾數(shù)是______.
A.40% B.7 C.6.5 D.5%
(2)請將下面統(tǒng)計圖補充完整.
(3)根據(jù)上述抽查,請估計該?荚嚪?jǐn)?shù)不低于6分的人數(shù)會有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=24,BC=12,點E沿BC邊從點B開始向點C以每秒2個單位長度的速度運動;點F沿CD邊從點C開始向點D以每秒4個單位長度的速度運動,如果E、F同時出發(fā),用t(0≤t≤6)秒表示運動的時間,當(dāng)t為何值時,以點E、C、F為頂點的三角形與△ACD相似?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com